Câu hỏi:

11/07/2024 726

Gọi I là giao điểm ba đường phân giác của tam giác ABC. Vẽ ID, IE, IF lần lượt vuông góc với các cạnh BC, AC và AB (Hình 7).

Chứng minh rằng IE = IF = ID

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét ΔFBI vuông tại F và ΔDBI vuông tại D có:

 (do BI là phân giác góc );

IB chung.

Do đó ΔFBI = ΔDBI (cạnh huyền – góc nhọn).

Suy ra IF = ID (hai cạnh tương ứng) (1).

Xét ΔIDC vuông tại D và ΔIEC vuông tại E có:

 (do IC là phân giác góc );

IC chung.

Do đó ΔIDC = ΔIEC (cạnh huyền – góc nhọn).

Suy ra ID = IE (hai cạnh tương ứng) (2).

Từ (1) và (2) suy ra  IE = IF = ID.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách vẽ đường tròn ngoại tiếp tam giác ABC:

− Vẽ đường trung trực a của đoạn thẳng AB.

− Vẽ đường trung trực b của đoạn thẳng AC.

− Gọi O là giao điểm của a và b.

− Vẽ đường tròn tâm O bán kính OA.

Khi đó, đường tròn (O; OA) là đường tròn ngoại tiếp tam giác ABC.

Lời giải

Cách vẽ đường tròn nội tiếp tam giác ABC:

− Vẽ đường phân giác AH của góc BAC.

− Vẽ đường phân giác BE của góc ABC.

− Gọi O là giao điểm của AH và BE.

− Vẽ đường tròn tâm O bán kính OH.

Khi đó, đường tròn (O; OH) là đường tròn nội tiếp tam giác ABC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP