Câu hỏi:

11/07/2024 539

Cho tam giác ABC (AC < BC) nội tiếp đường tròn (O) có AB là đường kính. Từ điểm O vẽ đường thẳng song song với AC và cắt đường tròn (O) tại I (điểm I thuộc cung nhỏ CB).
Vẽ tiếp tuyến của đường tròn (O) tại B và cắt OI tại M. Chứng minh MC là tiếp tuyến của đường tròn (O).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi N là giao điểm của BC và OI.

Tam giác OBC có OB = OC = R nên ∆OBC cân tại O.

Ta có ON là đường cao của ∆OBC cân tại O.

Suy ra ON cũng là đường phân giác của .

Do đó

Xét ∆COM và ∆BOM có:

OM là cạnh chung;  OB = OC = R.

Do đó ∆COM = ∆BOM (c.g.c).

Suy ra (hai góc tương ứng).

Mà (BM là tiếp tuyến của đường tròn (O) tại B).

Suy ra nên OC MC tại C.

Mà C thuộc đường tròn (O), do đó MC là tiếp tuyến của đường tròn (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách vẽ đường tròn ngoại tiếp tam giác ABC:

− Vẽ đường trung trực a của đoạn thẳng AB.

− Vẽ đường trung trực b của đoạn thẳng AC.

− Gọi O là giao điểm của a và b.

− Vẽ đường tròn tâm O bán kính OA.

Khi đó, đường tròn (O; OA) là đường tròn ngoại tiếp tam giác ABC.

Lời giải

Cách vẽ đường tròn nội tiếp tam giác ABC:

− Vẽ đường phân giác AH của góc BAC.

− Vẽ đường phân giác BE của góc ABC.

− Gọi O là giao điểm của AH và BE.

− Vẽ đường tròn tâm O bán kính OH.

Khi đó, đường tròn (O; OH) là đường tròn nội tiếp tam giác ABC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP