Câu hỏi:
12/07/2024 299
Một vật được ném từ mặt đất lên trời xiên góc α so với phương nằm ngang với vận tốc ban đầu v0 = 9 m/s (H.2.10). Khi đó quỹ đạo chuyển động của vật tuân theo phương trình
ở đó x (mét) là khoảng cách vật bay được theo phương ngang từ điểm ném, y (mét) là độ cao so với mặt đất của vật trong quá trình bay, g là gia tốc trọng trường (theo Vật lí đại cương, Nhà xuất bản Giáo dục Việt Nam, 2016).

Tính độ cao nhất của vật trên quỹ đạo và xác định thời điểm mà vật đạt được độ cao đó (giả sử gia tốc trọng trường là g = 9,8 m/s2).
Một vật được ném từ mặt đất lên trời xiên góc α so với phương nằm ngang với vận tốc ban đầu v0 = 9 m/s (H.2.10). Khi đó quỹ đạo chuyển động của vật tuân theo phương trình ở đó x (mét) là khoảng cách vật bay được theo phương ngang từ điểm ném, y (mét) là độ cao so với mặt đất của vật trong quá trình bay, g là gia tốc trọng trường (theo Vật lí đại cương, Nhà xuất bản Giáo dục Việt Nam, 2016).
Quảng cáo
Trả lời:
Ta luôn có y ≥ 0 và dễ thấy y = 0 tại x = x1 = 0 và x = x2 (hình vẽ).
Xét trên khoảng [0; x2].
Đạo hàm của hàm y là
Ta có
Vận dụng phương pháp tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, ta có:
Vì giá trị là giá trị lớn nhất trong ba giá trị trên, nên giá trị lớn nhất của y là
đạt được khi
Từ hình vẽ, ta có vx = v0.cosα, mà x = vx.t nên
Thay v0 = 9 m/s và g = 9,8 m/s2 vào (*) và (**) ta được:
tại
Vậy vật đạt độ cao nhất trên quỹ đạo là tại thời điểm
(s).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hàm doanh thu là: R(x) = x.p(x) = x.(1 500 – 3x) = 1 500x – 3x2 (nghìn đồng).
Hàm lợi nhuận là:
P(x) = R(x) – C(x) = 1 500x – 3x2 – (18 000 + 500x – 1,6x2 + 0,004x3)
= 1 500x – 3x2 – 18 000 – 500x + 1,6x2 – 0,004x3
= – 0,004x3 – 1,4x2 + 1 000x – 18 000.
Vậy công thức của hàm lợi nhuận là P(x) = – 0,004x3 – 1,4x2 + 1 000x – 18 000 (nghìn đồng).
Lời giải
Hàm doanh thu khi chở x khách hàng là:
= 450 000x – 7 500x2 + 31,25x3 (đồng) với 0 ≤ x ≤ 60.
Đạo hàm của hàm R(x) là: R’(x) = 450 000 – 15 000x + 93,75x2.
R’(x) = 0 ⇔ 450 000 – 15 000x + 93,75x2 = 0
⇔ x = 120 (không thuộc [0; 60]) hoặc x = 40 (thỏa mãn).
Vận dụng phương pháp tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, ta có:
R(0) = 0; R(40) = 8 000 000; R(60) = 6 750 000.
Vì giá trị R(40) là giá trị lớn nhất trong ba giá trị trên, nên giá trị lớn nhất của R(x) đạt được khi x = 40.
Vậy xe có doanh thu cao nhất khi chở 40 hành khách và doanh thu đó bằng 8 000 000 đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.