Câu hỏi:

12/07/2024 2,262

Giải bài toán quy hoạch tuyến tính:

F = 8x + 5y → max, min

với ràng buộc

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Viết lại ràng buộc của bài toán thành

Tập phương án Ω của bài toán là miền ngũ giác ABCDE được tô màu như hình dưới đây.  

Tọa độ giao điểm D của hai đường thẳng 2x + y – 8 = 0 và y = 5 là nghiệm của hệ phương trình .

Tương tự, ta tìm được: A(0; 1), B(3; 1), C(3; 2) và E(0; 5).

Giá trị của biểu thức F tại các đỉnh của Ω:

F(0; 1) = 8  0 + 5  1 = 5;

F(3; 1) = 8  3 + 5  1 = 29;

F(3; 2) = 8  3 + 5  2 = 34;

;

F(0; 5) = 8  0 + 5  5 = 25.

Từ đó, .

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x, y (x ≥ 0, y ≥ 0) lần lượt là số chiếc thuyền loại A và B được đóng trong một tuần.

Khi đó, lợi nhuận thu được mỗi tuần là P = 0,5x + 0,7y (triệu đồng).

mỗi tuần cơ sở bán được tối đa 6 thuyền loại A và tối thiểu 2 thuyền loại B nên ta có x ≤ 6 và y ≥ 2.

Do mỗi tuần cơ sở bổ trí được tối đa 120 giờ lao động cho việc đóng hai loại thuyền nên ta có 10x + 15y ≤ 120 hay 2x + 3y ≤ 24.

Từ đó, ta nhận được bài toán quy hoạch tuyến tính:

P = 0,5x + 0,7y → max

Với ràng buộc

Tập phương án Ω của bài toán là miền tứ giác ABCD được tô màu như hình dưới đây với các đỉnh A(0; 2), B(6; 2), C(6; 4) và D(0; 8).

Giá trị của P tại các đỉnh:

P(0; 2) = 0,5 0 + 0,7 2 = 1,4;

P(6; 2) = 0,5 6 + 0,7 2 = 4,4;

P(6; 4) = 0,5 6 + 0,7 4 = 5,8;

P(0; 8) = 0,5 0 + 0,7 8 = 5,6.

Do đó, , đạt được khi x = 6, y = 4.

Vậy mỗi tuần cơ sở đó nên đóng 6 chiếc thuyền loại A và 4 chiếc thuyền loại B thì thu được lợi nhuận cao nhất là 5,8 triệu đồng.

Lời giải

Gọi x, y (x ≥ 0, y ≥ 0, tính theo tấn) lần lượt là khối lượng sản phẩm loại A và sản phẩm loại B cần sản xuất. Khi đó lợi nhuận thu được là P = 0,05x + 0,09y (triệu đồng).

xí nghiệp sản xuất sản lượng sản phẩm loại A không ít hơn 3 lần sản lượng sản phẩm loại B nên x ≥ 3y.

Do thời gian để làm việc của dây chuyền không quá 6 giờ nên 0,02x + 0,03y ≤ 6.

Từ đó, ta nhận được bài toán quy hoạch tuyến tính:

P = 0,05x + 0,09y → max

với ràng buộc

Tập phương án Ω của bài toán là miền tam giác OAB trên hình dưới đây với các đỉnh O(0; 0), A(300; 0) và .

Giá trị của P tại các đỉnh:

P(0; 0) = 0;

P(300; 0) = 0,05 300 + 0,09 0 = 15;

.

Do đó, , đạt được khi x = 200, .

Vậy trong thời gian không quá 6 giờ làm việc của dây chuyền, cần sản xuất 200 tấn sản phẩm loại A và tấn sản phẩm loại B để thu được lợi nhuận cao nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay