Câu hỏi:
12/07/2024 2,411
Hàm lượng các vi chất (chất vi lượng) calcium, phosphorus và iron chứa trong 100 g hai loại thực phẩm X và Y được cho ở bảng sau:
Calcium (mg)
Phosphorus (mg)
Iron (mg)
X
200
600
8
Y
500
300
6
Từ hai loại thực phẩm X và Y, người ta muốn tạo ra một lượng thực phẩm hỗn hợp chứa ít nhất 2 000 mg calcium, 3 000 mg phosphorus, 48 mg iron. Cần chọn bao nhiêu gam thực phẩm mỗi loại X và Y sao cho lượng thực phẩm hỗn hợp có khối lượng nhỏ nhất?
Hàm lượng các vi chất (chất vi lượng) calcium, phosphorus và iron chứa trong 100 g hai loại thực phẩm X và Y được cho ở bảng sau:
|
Calcium (mg) |
Phosphorus (mg) |
Iron (mg) |
X |
200 |
600 |
8 |
Y |
500 |
300 |
6 |
Từ hai loại thực phẩm X và Y, người ta muốn tạo ra một lượng thực phẩm hỗn hợp chứa ít nhất 2 000 mg calcium, 3 000 mg phosphorus, 48 mg iron. Cần chọn bao nhiêu gam thực phẩm mỗi loại X và Y sao cho lượng thực phẩm hỗn hợp có khối lượng nhỏ nhất?
Quảng cáo
Trả lời:
Gọi x, y (x ≥ 0, y ≥ 0, tính theo gam) lần lượt là số gam thực phẩm loại X và loại Y cần chọn để tạo ra thực phẩm hỗn hợp.
Từ yêu cầu thực phẩm hỗn hợp cần chứa ít nhất 2 000 mg calcium, 3 000 mg phosphorus, 48 mg iron, ta có các bất phương trình
hay
Lượng thực phẩm hỗn hợp có khối lượng là F = x + y (g).
Từ đó, ta nhận được bài toán quy hoạch tuyến tính:
F = x + y → min
với ràng buộc
Tập phương án Ω của bài toán là miền không bị gạch chéo trên hình dưới đây, có các đỉnh là A(1 000; 0), , C(300; 400) và D(0; 1 000).
Miền Ω nằm trong góc phần tư thứ nhất, các hệ số của hàm mục tiêu F dương nên F đạt giá trị nhỏ nhất tại đỉnh của Ω.
Giá trị của F tại các đỉnh:
F(1 000; 0) = 1 000 + 0 = 1 000;
;
F(300; 400) = 300 + 400 = 700;
F(0; 1 000) = 0 + 1 000 = 1 000.
Suy ra , đạt được khi
.
Vậy cần dùng g thực phẩm loại X và
g thực phẩm loại Y thì lượng thực phẩm hỗn hợp có khối lượng nhỏ nhất.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x, y (x ≥ 0, y ≥ 0) lần lượt là số chiếc thuyền loại A và B được đóng trong một tuần.
Khi đó, lợi nhuận thu được mỗi tuần là P = 0,5x + 0,7y (triệu đồng).
Vì mỗi tuần cơ sở bán được tối đa 6 thuyền loại A và tối thiểu 2 thuyền loại B nên ta có x ≤ 6 và y ≥ 2.
Do mỗi tuần cơ sở bổ trí được tối đa 120 giờ lao động cho việc đóng hai loại thuyền nên ta có 10x + 15y ≤ 120 hay 2x + 3y ≤ 24.
Từ đó, ta nhận được bài toán quy hoạch tuyến tính:
P = 0,5x + 0,7y → max
Với ràng buộc
Tập phương án Ω của bài toán là miền tứ giác ABCD được tô màu như hình dưới đây với các đỉnh A(0; 2), B(6; 2), C(6; 4) và D(0; 8).
Giá trị của P tại các đỉnh:
P(0; 2) = 0,5 ∙ 0 + 0,7 ∙ 2 = 1,4;
P(6; 2) = 0,5 ∙ 6 + 0,7 ∙ 2 = 4,4;
P(6; 4) = 0,5 ∙ 6 + 0,7 ∙ 4 = 5,8;
P(0; 8) = 0,5 ∙ 0 + 0,7 ∙ 8 = 5,6.
Do đó, , đạt được khi x = 6, y = 4.
Vậy mỗi tuần cơ sở đó nên đóng 6 chiếc thuyền loại A và 4 chiếc thuyền loại B thì thu được lợi nhuận cao nhất là 5,8 triệu đồng.
Lời giải
Gọi x, y (x ≥ 0, y ≥ 0, tính theo tấn) lần lượt là khối lượng sản phẩm loại A và sản phẩm loại B cần sản xuất. Khi đó lợi nhuận thu được là P = 0,05x + 0,09y (triệu đồng).
Vì xí nghiệp sản xuất sản lượng sản phẩm loại A không ít hơn 3 lần sản lượng sản phẩm loại B nên x ≥ 3y.
Do thời gian để làm việc của dây chuyền không quá 6 giờ nên 0,02x + 0,03y ≤ 6.
Từ đó, ta nhận được bài toán quy hoạch tuyến tính:
P = 0,05x + 0,09y → max
với ràng buộc
Tập phương án Ω của bài toán là miền tam giác OAB trên hình dưới đây với các đỉnh O(0; 0), A(300; 0) và .
Giá trị của P tại các đỉnh:
P(0; 0) = 0;
P(300; 0) = 0,05 ∙ 300 + 0,09 ∙ 0 = 15;
.
Do đó, , đạt được khi x = 200,
.
Vậy trong thời gian không quá 6 giờ làm việc của dây chuyền, cần sản xuất 200 tấn sản phẩm loại A và tấn sản phẩm loại B để thu được lợi nhuận cao nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.