Câu hỏi:
12/07/2024 254
Trong các biến ngẫu nhiên rời rạc sau, biến ngẫu nhiên rời rạc nào có phân bố Bernoulli? Xác định giá trị của tham số p và tính độ lệch chuẩn của các biến ngẫu nhiên rời rạc có phân bố Bernoulli đó.
Gieo 2 con xúc xắc cân đối và đồng chất. Biến ngẫu nhiên rời rạc Y nhận giá trị bằng 1 nếu xuất hiện mặt 6 chấm, bằng 0 nếu không xuất hiện mặt nào 6 chấm.
Trong các biến ngẫu nhiên rời rạc sau, biến ngẫu nhiên rời rạc nào có phân bố Bernoulli? Xác định giá trị của tham số p và tính độ lệch chuẩn của các biến ngẫu nhiên rời rạc có phân bố Bernoulli đó.
Quảng cáo
Trả lời:
Y nhận hai giá trị là: 0; 1.
Vì có 7 kết quả thuận lợi cho biến cố “Y bằng 1” trong tổng số 36 kết quả nên
Vậy Y có phân bố Bernoulli với tham số
Phương sai của Y là:
Độ lệch chuẩn của Y là:
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có với k = 0, 1, 2, 3, 4, 5.
Lần lượt tính P(X = k) với k = 0, 1, 2, 3, 4, 5 từ công thức trên, ta thu được bảng phân bố xác suất của X như sau:
X |
0 |
1 |
2 |
3 |
4 |
5 |
P |
|
|
|
|
|
|
Kì vọng của X là:
Phương sai của X là:
Độ lệch chuẩn của X là:
Chú ý: Ta cũng có thể tính kì vọng và phương sai của X như sau:
E(X) = np = 5 . 0,2 = 1 và V(X) = np(1 – p) = 5 . 0,2 . (1 – 0,2) = 0,8.
Do đó độ lệch chuẩn của X là:
Lời giải
Gọi T là phép thử “Phỏng vấn ngẫu nhiên một người lao động từ khi công nghiệp”. Theo đề bài, phép thử T được lặp lại 10 lần một cách độc lập. Gọi X là biến cố “Người lao động có bằng đại học”. Ta có P(X) = 30% = 0,3.
Gọi Xk là biến cố “Có k người có bằng đại học trong 10 người lao động được phỏng vấn”, với k = 0, 1, …, 10. Áp dụng công thức Bernoulli, ta có:
với k = 0, 1, …, 10.
Do đó,
Ta có
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.