Câu hỏi:
13/07/2024 265
Việc kiểm tra chỉ số đường huyết thường xuyên đóng vai trò vô cùng quan trọng để phòng và điều trị bệnh tiểu đường. Khi điều tra chỉ số đường huyết của 100 người cao tuổi ở một địa phương, được kết quả từ 5,0 đến 11,3. Nếu sử dụng mẫu số liệu ghép nhóm để biểu diễn chỉ số đường huyết của 100 người đó thì khoảng biến thiên của mẫu số liệu ghép nhóm đó là bao nhiêu?
A. 5,0.
B. 11,3.
C. 6,3.
D. 100.
Việc kiểm tra chỉ số đường huyết thường xuyên đóng vai trò vô cùng quan trọng để phòng và điều trị bệnh tiểu đường. Khi điều tra chỉ số đường huyết của 100 người cao tuổi ở một địa phương, được kết quả từ 5,0 đến 11,3. Nếu sử dụng mẫu số liệu ghép nhóm để biểu diễn chỉ số đường huyết của 100 người đó thì khoảng biến thiên của mẫu số liệu ghép nhóm đó là bao nhiêu?
A. 5,0.
B. 11,3.
C. 6,3.
D. 100.
Quảng cáo
Trả lời:
Đáp án đúng là: C
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R = 11,3 – 5,0 = 6,3.
Vậy chọn đáp án C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó là: ∆Q = Q3 – Q1 = 9 – 4 = 5.
Vậy chọn đáp án A.
Lời giải
a) S |
b) Đ |
c) S |
d) Đ |
Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a1 = 10, đầu mút phải của nhóm 8 là a9 = 90.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:
R = a9 – a1 = 90 – 10 = 80 (tuổi).
Ta có bảng sau:
Ta có: .
Nhận thấy 49 < 50 < 89 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 50.
Xét nhóm 3 là nhóm [30; 40) có s = 30, h = 10, n3 = 40 và nhóm 2 là nhóm [20; 30) có cf2 = 49.
Ta có: Q1 = s + = 30 +
= 30,25 (tuổi).
Có .
Nhận thấy 137 < 150 < 187 nên nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 150.
Xét nhóm 5 là nhóm [50; 60) có đầu mút trái t = 50, độ dài l = 10, tần số n5 = 50 và nhóm 4 là nhóm [40; 50) có tần số tích lũy cf4 = 137.
Ta có: Q3 = t + = 50 +
= 52,6 (tuổi).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:
∆Q = Q3 – Q1 = 52,6 – 30,25 = 22,35 (tuổi).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.