Câu hỏi:
22/07/2024 132Cho biểu thức \(P = \left( {\frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}}} \right):\left( {1 + \frac{{{x^2} + {y^2} + 2{x^2}{y^2}}}{{1 - {x^2}{y^2}}}} \right),\) trong đó x và y là hai biến thỏa mãn điều kiện x2y2 – 1 ≠ 0.
a) Tính mỗi tổng \(A = \frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}}\) và \(B = 1 + \frac{{{x^2} + {y^2} + 2{x^2}{y^2}}}{{1 - {x^2}{y^2}}}.\)
b) Từ kết quả câu a, hãy thu gọn P và giải thích tại sao giá trị của P không phụ thuộc vào giá trị của biến y.
c) Chứng minh đẳng thức \(P = 1 - \frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}}.\)
d) Sử dụng câu c, hãy tìm các giá trị của x và y sao cho P = 1.
Câu hỏi trong đề: Giải vở thực hành Toán 8 KNTT Bài tập ôn cuối năm !!
Quảng cáo
Trả lời:
a) Ta có: \(A = \frac{{x + y}}{{1 - xy}} + \frac{{x - y}}{{1 + xy}} = \frac{{\left( {x + y} \right)\left( {1 + xy} \right) + \left( {x - y} \right)\left( {1 - xy} \right)}}{{\left( {1 - xy} \right)\left( {1 + xy} \right)}}\)
\( = \frac{{x + {x^2}y + x{y^2} + y + x - {x^2}y + x{y^2} - y}}{{1 - {x^2}{y^2}}}\)
\( = \frac{{2x + 2x{y^2}}}{{1 - {x^2}{y^2}}} = \frac{{2x\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}.\)
\(B = 1 + \frac{{{x^2} + {y^2} + 2{x^2}{y^2}}}{{1 - {x^2}{y^2}}} = \frac{{1 - {x^2}{y^2} + {x^2} + {y^2} + 2{x^2}{y^2}}}{{1 - {x^2}{y^2}}}\)
\( = \frac{{{x^2} + {y^2} + {x^2}{y^2} + 1}}{{1 - {x^2}{y^2}}} = \frac{{\left( {1 + {x^2}} \right) + {y^2}\left( {1 + {x^2}} \right)}}{{1 - {x^2}{y^2}}}\)
\( = \frac{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}.\)
b) Từ hai kết quả trên, ta có:
\(P = A:B = \frac{{2x\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}:\frac{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}}{{1 - {x^2}{y^2}}}\)
\( = \frac{{2x\left( {1 + {x^2}} \right)}}{{1 - {x^2}{y^2}}}.\frac{{1 - {x^2}{y^2}}}{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}} = \frac{{2x}}{{1 + {x^2}}}.\) (*)
Trong biểu thức (*), ta thấy không xuất hiện biến y, chứng tỏ giá trị của biểu thức P nếu xác định thì nó không phụ thuộc vào biến y.
c) Ta thấy:
\(1 - \frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}} = \frac{{1 + {x^2} - \left( {1 - 2x + {x^2}} \right)}}{{1 + {x^2}}} = \frac{{1 + {x^2} - 1 + 2x - {x^2}}}{{1 + {x^2}}} = \frac{{2x}}{{1 + {x^2}}}.\)
So sánh kết quả này với (*), ta suy ra \(P = 1 - \frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}}.\)
d) Cách 1. Từ kết quả câu c, ta có: P = 1 khi \(\frac{{{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}} = 0.\) Điều này xảy ra khi hai biến x và y xác định, tức là nếu x = 1 và x2y2 – 1 ≠ 0. Vậy các giá trị của x và y để P = 1 là x = 1 và y2 ≠ 1 hay \(y \ne \pm 1.\)
Cách 2. Từ (*) ta có (với điều kiện x2y2 – 1 ≠ 0): \(P = \frac{{2x}}{{1 + {x^2}}} = 1,\) hay 2x = 1 + x2, tức là (x – 1)2 = 0, hay x = 1.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Do BE là đường phân giác của góc B nên \({\widehat B_1} = {\widehat B_2},\) ta có: \(\frac{{EA}}{{EC}} = \frac{{BA}}{{BC}}\) (1).
Tương tự với đường phân giác CF, ta có: \(\frac{{FA}}{{FB}} = \frac{{CA}}{{CB}}.\) (2)
Bởi vậy, từ (1) và (2) ta suy ra \(\frac{{EA}}{{EC}} = \frac{{FA}}{{FB}},\) nghĩa là EF định ra trên hai cạnh AB và AC những đoạn thẳng tương ứng tỉ lệ. Do đó theo định lí Thàles đảo ta có EF // BC. Từ đó suy ra ∆BIC ᔕ ∆EIF (ĐPCM).
b) Hai tam giác BFI và CFB có \(\widehat F\) chung, \({\widehat B_1} = \frac{{\widehat {ABC}}}{2} = \frac{{\widehat {ACB}}}{2} = \widehat C{ & _2}.\) Do đó ∆BFI ᔕ ∆CFB suy ra \(\frac{{FB}}{{FC}} = \frac{{FI}}{{FB}}\) hay FB2 = FI.FC (ĐPCM).
c) Ta có EF // BC (chứng minh trên).
Do đó \(\frac{{BC}}{{EF}} = \frac{{AB}}{{AF}} = \frac{{\left( {AF + FB} \right)}}{{AF}} = 1 + \frac{{BC}}{{AC}} = 1 + \frac{3}{6} = \frac{3}{2}.\)
Từ đó suy ra \(EF = 3:\frac{3}{2} = 2\) (cm).
Vậy EF = 2 cm.
Lời giải
a) Số tiền phải trả khi di chuyển 1 km đầu là 10 000 đồng.
Số tiền phải trả khi di chuyển 30 km tiếp theo là 30.13600 = 408 000 (đồng).
Số tiền phải trả khi di chuyển 4 km cuối là 4.11 000 = 44 000 (đồng).
Vậy số tiền phải trả cho 35 km là:
10 000 + 408 000 + 44 000 = 462 000 (đồng).
b) Vì 1 < x ≤ 30 nên số tiền trả cho quãng đường x kilomet gồm 2 phần: Phần thứ nhất là giá mở cửa 10 000 đồng, phần thứ hai là trả cho quãng đường x – 1 km tiếp theo. Công thức tính cần tìm là 10 000 + 13 600(x – 1), hay 13 600x – 3 600, với 1 < x ≤ 30. (*)
Áp dụng (*): Nếu người đó di chuyển 30 km thì số tiền phải trả là
13 600.30 – 3 600 = 404 400 (đồng).
c) Do số tiền đã trả cho taxi là 268 400, ít hơn 404 400 đồng, nên quãng đường đã di chuyển không quá 30 km. Vậy để tính quãng đường này, ta có thể dùng công thức (*).
13 600x – 3 600 = 268 400, hay 13 600x = 268 400 + 3 600 = 272 200, tức là \(x = \frac{{272000}}{{13600}} = 20\) (km).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 24
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề cuối kì 2 Toán 8 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 1
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận