Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {a\,;\,\,0\,;\,\,0} \right),\,\,B\left( {0\,;\,\,b\,;\,\,0} \right),\,\,C\left( {0\,;\,\,0\,;\,\,c} \right)\), trong đó \(a > 0,\)\(b > 0,\)\(c > 0\)và \(\frac{2}{a} + \frac{1}{b} + \frac{1}{c} = 6\). Biết mặt phẳng \(\left( {ABC} \right)\) tiếp xúc với mặt cầu \[\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = \frac{{25}}{6}\]. Thể tích của khối tứ diện \[OABC\] bằng bao nhiêu?
Đáp án: ……….
Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {a\,;\,\,0\,;\,\,0} \right),\,\,B\left( {0\,;\,\,b\,;\,\,0} \right),\,\,C\left( {0\,;\,\,0\,;\,\,c} \right)\), trong đó \(a > 0,\)\(b > 0,\)\(c > 0\)và \(\frac{2}{a} + \frac{1}{b} + \frac{1}{c} = 6\). Biết mặt phẳng \(\left( {ABC} \right)\) tiếp xúc với mặt cầu \[\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = \frac{{25}}{6}\]. Thể tích của khối tứ diện \[OABC\] bằng bao nhiêu?
Đáp án: ……….
Quảng cáo
Trả lời:
Ta có \(\left( {ABC} \right):\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\).
Mặt cầu \((S)\) có tâm \(I\left( {2\,;\,\,1\,;\,\,1} \right)\) và bán kính \(R = \frac{5}{{\sqrt 6 }}\).
\( \Leftrightarrow \frac{{\left| {6 - 1} \right|}}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }} = \frac{5}{{\sqrt 6 }} \Leftrightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = 6\).
Áp dụng BĐT Bunhiacopxki ta có:
\(\left( {{2^2} + {1^2} + {1^2}} \right)\left( {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} \right) \ge {\left( {\frac{2}{a} + \frac{1}{b} + \frac{1}{c}} \right)^2} = {6^2} \Rightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} \ge 6.\)
Dấu xảy ra \[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{2}{{\frac{1}{a}}} = \frac{1}{{\frac{1}{b}}} = \frac{1}{{\frac{1}{c}}}}\\{\frac{2}{a} + \frac{1}{b} + \frac{1}{c} = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = \frac{1}{2}}\\{b = c = 1}\end{array}} \right.} \right.\]. Khi đó \({V_{{\rm{OABC }}}} = \frac{1}{6}abc = \frac{1}{{12}}\).
Đáp án: \(\frac{1}{{12}}\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho hình chóp có đáy là hình thang \(ABCD\) với \(AD{\rm{ // }}BC\) và \(AD = 2BC\). Gọi \[M\] là điểm trên cạnh \[SD\] thỏa mãn (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/07/blobid4-1722236954.png)
Gọi \[O\] là giao điểm của \[AC\] và \[BD;{\rm{ }}I\] là giao điểm của \[SO\] và \[BM\,;\,\,N\] là giao điểm của \[AI\] và \[SC\]
Suy ra \[I = \left( {ABM} \right) \cap SC\].
Do \(ABCD\) là hình thang với \(AD{\rm{ // }}BC\) và \(AD = 2BC.\)
\[\frac{{OC}}{{OA}} = \frac{{OB}}{{OD}} = \frac{{BC}}{{AD}} = \frac{1}{2} \Rightarrow \frac{{OA}}{{AC}} = \frac{{OD}}{{BD}} = \frac{2}{3}.\]![Cho hình chóp có đáy là hình thang \(ABCD\) với \(AD{\rm{ // }}BC\) và \(AD = 2BC\). Gọi \[M\] là điểm trên cạnh \[SD\] thỏa mãn (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2024/07/blobid6-1722236966.png)
Ta có \(OM{\rm{ // S}}B\) và \[\frac{{OM}}{{SB}} = \frac{2}{3} \Rightarrow \frac{{OI}}{{SI}} = \frac{{OM}}{{SB}} = \frac{2}{3}.\]
Kẻ \(OJ{\rm{ // AN}}\,\,\left( {J \in AN} \right)\)
Xét tam giác \[ANC\] có:
• Vì \(OJ{\rm{ // AN}}\) nên
\[\frac{{OA}}{{AC}} = \frac{2}{3} \Rightarrow \frac{{NJ}}{{NC}} = \frac{2}{3} \Rightarrow \overrightarrow {NJ} = \frac{2}{3}\overrightarrow {NC} .\]• Vì \(IN{\rm{ // OJ}}\) nên \[\frac{{SI}}{{IO}} = \frac{3}{2} \Rightarrow \frac{{SN}}{{NJ}} = \frac{3}{2} \Rightarrow \overrightarrow {SN} = \frac{3}{2}\overrightarrow {NJ} \]\[ \Rightarrow \overrightarrow {SN} = \overrightarrow {NC} \Rightarrow \overrightarrow {SN} = \frac{1}{2}\overrightarrow {SC} \Rightarrow \frac{{SN}}{{SC}} = \frac{1}{2}.\]
Chọn A.
Lời giải
Sơ đồ phản ứng xảy ra như sau:
\({\rm{Al}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_3} \cdot 9{{\rm{H}}_2}{\rm{O}} \to {\rm{Al}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_3} \to {\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}\)
Tại nhiệt độ 210oC, phần rắn còn lại (chứa ba nguyên tố)
=> Hỗn hợp chứa \({\rm{Al}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_3}\) và \({\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}\,(3\)nguyên tố là \({\rm{Al,}}\,{\rm{N}},{\rm{O}}).\)
Coi số mol của \({\rm{Al}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_3} \cdot 9{{\rm{H}}_2}{\rm{O}} = 1\;{\rm{mol}}\)ta có:
\({\rm{Al}}{\left( {{\rm{N}}{{\rm{O}}_3}} \right)_3}.9{{\rm{H}}_2}{\rm{O}} \to \left\{ {\begin{array}{*{20}{l}}{{\rm{Al}}{{\left( {{\rm{N}}{{\rm{O}}_3}} \right)}_3}:{x^{mol}}}\\{{\rm{A}}{{\rm{l}}_2}{{\rm{O}}_3}:{y^{mol}}}\end{array} \Rightarrow {\rm{ }}\left\{ {\begin{array}{*{20}{l}}{x + 2y = 1\,\,({\rm{BTNT}}\,\,{\rm{Al}})}\\{\frac{{213x + 102y}}{{375.1}} \cdot 100\% = 30\% }\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = \frac{{41}}{{108}}}\\{y = \frac{{67}}{{216}}}\end{array}} \right.} \right.} \right.\)
Thành phần % theo khối lượng của oxyen có trong phần chất rắn tại 210oC là
\(\% {m_O} = \frac{{(9x + 3y) \cdot 16}}{{213x + 102y}} \cdot 100\% = 61,83\% .\)
Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.