Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{{m^2}{x^3}}}{3} - \left( {{m^2} - 4m} \right){x^2} + x + 3\) đồng biến trên \(\mathbb{R}?\)
Quảng cáo
Trả lời:
Ta có: \(y' = {m^2}{x^2} - 2\left( {{m^2} - 4m} \right)x + 1\).
Hàm số đồng biến trên \(\mathbb{R} \Leftrightarrow y' \ge 0\,,\,\,\forall x \in \mathbb{R} \Leftrightarrow {m^2}{x^2} - 2\left( {{m^2} - 4m} \right)x + 1 \ge 0\,,\,\,\forall x \in \mathbb{R}\). (*) .
• Với \(m = 0\), ta có \(y' = 1 \ge 0\,,\,\,\forall x \in \mathbb{R}\) (thỏa mãn bài toán).
• Với \({\rm{m}} \ne 0 \Leftrightarrow {{\rm{m}}^2} > 0:\) được thỏa mãn khi và chỉ khi \(\Delta ' = {\left( {{{\rm{m}}^2} - 4\;{\rm{m}}} \right)^2} - {{\rm{m}}^2} \le 0\)
\( \Leftrightarrow {m^2}\left[ {{{\left( {m - 4} \right)}^2} - 1} \right] \le 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{{(m - 4)}^2} \le 1}\\{m \ne 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 1 \le m - 4 \le 1}\\{m \ne 0}\end{array} \Leftrightarrow 3 \le m \le 5.} \right.} \right.\)
\( \Rightarrow m \in \left[ {3\,;\,\,5} \right] \cup \left\{ 0 \right\}\) thì hàm số đã cho đồng biến trên \(\mathbb{R}\).
Vậy có 4 giá trị m thỏa mãn. Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Phân tích nội dung các đáp án, ta thấy:
A. GNI bình quân đầu người rất cao. → Sai
B. đã phát triển mạnh nền kinh tế tri thức. → Sai
C. chỉ số phát triển con người rất cao. → Sai
D. trình độ phát triển kinh tế chưa cao. → Đúng. Chọn D.
Câu 2
A. 5 cm.
Lời giải
Dựa vào đồ thị thấy động năng bằng thế năng ứng với các vị trí li độ là: \[\left\{ \begin{array}{l}{x_{d1}} = - 3\,cm\\{x_{t2}} = 4\,cm\end{array} \right.\]
\[{{\rm{W}}_{d1}} = {{\rm{W}}_{t2}} \Leftrightarrow \frac{1}{2}k{A^2} - \frac{1}{2}kx_{d1}^2 = \frac{1}{2}kx_{t2}^2 \Leftrightarrow {A^2} - x_{d1}^2 = x_{t2}^2 \Leftrightarrow A = \sqrt {x_{d1}^2 + x_{t2}^2} = 5\,cm.\] Chọn A.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

