Câu hỏi:

30/07/2024 122

Cho hàm số \({\rm{y}} = {\rm{f}}\left( {\rm{x}} \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \({\rm{f}}\left( 0 \right) = 0\,;\,\,{\rm{f}}\left( 4 \right) > 4\). Biết hàm \({\rm{y}} = {\rm{f'}}\left( {\rm{x}} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số \(g\left( {\rm{x}} \right) = \left| {f\left( {{x^2}} \right) - 2x} \right|\) là
Cho hàm số \({\rm{y}} = {\rm{f}}\left( {\rm{x}} \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \({\rm{f}}\left( 0 \right) = 0\,;\,\,{\rm{f}}\left( 4 \right) > 4\). Biết hàm \({\rm{y}} = {\rm{f'}}\left( {\rm{x}} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số \(g\left( {\rm{x}} \right) = \left| {f\left( {{x^2}} \right) - 2x} \right|\) là 	A. 2.	B. 1.	 	C. 4.	D. 3. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hàm số \({\rm{y}} = {\rm{f}}\left( {\rm{x}} \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \({\rm{f}}\left( 0 \right) = 0\,;\,\,{\rm{f}}\left( 4 \right) > 4\). Biết hàm \({\rm{y}} = {\rm{f'}}\left( {\rm{x}} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số \(g\left( {\rm{x}} \right) = \left| {f\left( {{x^2}} \right) - 2x} \right|\) là 	A. 2.	B. 1.	 	C. 4.	D. 3. (ảnh 2)

Xét \(h\left( {\rm{x}} \right) = f\left( {{x^2}} \right) - 2x\)

\( \Rightarrow h'\left( {\rm{x}} \right) = 2xf'\left( {{x^2}} \right) - 2 = 2\left[ {xf'\left( {{x^2}} \right) - 1} \right],\,\,h'\left( {\rm{x}} \right) = 0\)

\( \Leftrightarrow xf'\left( {{x^2}} \right) - 1 = 0\)

Nếu \(x \le 0\) thì phương trình vô nghiệm vì \(f'\left( {{x^2}} \right) \ge 0\,,\,\,\forall x\) nên \(xf'\left( {{x^2}} \right) \le 0\,,\,\,\forall x \le 0 \Rightarrow xf'\left( {{x^2}} \right) - 1 < 0\,,\,\,\forall x \le 0\)

Nếu \(x > 0\), đặt \[{x^2} = t \Rightarrow f'\left( t \right) = \frac{1}{{\sqrt t }}\] có nghiệm duy nhất \(t = a \in \left( {0\,;\,\,1} \right).\)

\(h\left( 0 \right) = 0\,;\,\,h\left( 2 \right) > 0\) nên ta có bảng biến thiên của h(x) như sau:

Cho hàm số \({\rm{y}} = {\rm{f}}\left( {\rm{x}} \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \({\rm{f}}\left( 0 \right) = 0\,;\,\,{\rm{f}}\left( 4 \right) > 4\). Biết hàm \({\rm{y}} = {\rm{f'}}\left( {\rm{x}} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số \(g\left( {\rm{x}} \right) = \left| {f\left( {{x^2}} \right) - 2x} \right|\) là 	A. 2.	B. 1.	 	C. 4.	D. 3. (ảnh 3)

Vậy hàm số \(g\left( x \right) = \left| {h\left( x \right)} \right|\) có 3 cực trị. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phân tích nội dung các đáp án, ta thấy:

A. GNI bình quân đầu người rất cao. → Sai

B. đã phát triển mạnh nền kinh tế tri thức. → Sai

C. chỉ số phát triển con người rất cao. → Sai

D. trình độ phát triển kinh tế chưa cao. → Đúng. Chọn D.

Câu 2

Lời giải

Nông nghiệp Liên bang Nga phát triển mạnh từ năm 2000 đến nay không phải là do tích cực mở rộng diện tích trồng trọt mà do sử dụng kỹ thuật hiện đại, nâng cao năng suất. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP