Câu hỏi:

30/07/2024 156 Lưu

Cho hàm số \({\rm{y}} = {\rm{f}}\left( {\rm{x}} \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \({\rm{f}}\left( 0 \right) = 0\,;\,\,{\rm{f}}\left( 4 \right) > 4\). Biết hàm \({\rm{y}} = {\rm{f'}}\left( {\rm{x}} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số \(g\left( {\rm{x}} \right) = \left| {f\left( {{x^2}} \right) - 2x} \right|\) là
Cho hàm số \({\rm{y}} = {\rm{f}}\left( {\rm{x}} \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \({\rm{f}}\left( 0 \right) = 0\,;\,\,{\rm{f}}\left( 4 \right) > 4\). Biết hàm \({\rm{y}} = {\rm{f'}}\left( {\rm{x}} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số \(g\left( {\rm{x}} \right) = \left| {f\left( {{x^2}} \right) - 2x} \right|\) là 	A. 2.	B. 1.	 	C. 4.	D. 3. (ảnh 1)

A. 2. 
B. 1.
C. 4. 
D. 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hàm số \({\rm{y}} = {\rm{f}}\left( {\rm{x}} \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \({\rm{f}}\left( 0 \right) = 0\,;\,\,{\rm{f}}\left( 4 \right) > 4\). Biết hàm \({\rm{y}} = {\rm{f'}}\left( {\rm{x}} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số \(g\left( {\rm{x}} \right) = \left| {f\left( {{x^2}} \right) - 2x} \right|\) là 	A. 2.	B. 1.	 	C. 4.	D. 3. (ảnh 2)

Xét \(h\left( {\rm{x}} \right) = f\left( {{x^2}} \right) - 2x\)

\( \Rightarrow h'\left( {\rm{x}} \right) = 2xf'\left( {{x^2}} \right) - 2 = 2\left[ {xf'\left( {{x^2}} \right) - 1} \right],\,\,h'\left( {\rm{x}} \right) = 0\)

\( \Leftrightarrow xf'\left( {{x^2}} \right) - 1 = 0\)

Nếu \(x \le 0\) thì phương trình vô nghiệm vì \(f'\left( {{x^2}} \right) \ge 0\,,\,\,\forall x\) nên \(xf'\left( {{x^2}} \right) \le 0\,,\,\,\forall x \le 0 \Rightarrow xf'\left( {{x^2}} \right) - 1 < 0\,,\,\,\forall x \le 0\)

Nếu \(x > 0\), đặt \[{x^2} = t \Rightarrow f'\left( t \right) = \frac{1}{{\sqrt t }}\] có nghiệm duy nhất \(t = a \in \left( {0\,;\,\,1} \right).\)

\(h\left( 0 \right) = 0\,;\,\,h\left( 2 \right) > 0\) nên ta có bảng biến thiên của h(x) như sau:

Cho hàm số \({\rm{y}} = {\rm{f}}\left( {\rm{x}} \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và \({\rm{f}}\left( 0 \right) = 0\,;\,\,{\rm{f}}\left( 4 \right) > 4\). Biết hàm \({\rm{y}} = {\rm{f'}}\left( {\rm{x}} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số \(g\left( {\rm{x}} \right) = \left| {f\left( {{x^2}} \right) - 2x} \right|\) là 	A. 2.	B. 1.	 	C. 4.	D. 3. (ảnh 3)

Vậy hàm số \(g\left( x \right) = \left| {h\left( x \right)} \right|\) có 3 cực trị. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. GNI bình quân đầu người rất cao. 
B. đã phát triển mạnh nền kinh tế tri thức. 
C. chỉ số phát triển con người rất cao. 
D. trình độ phát triển kinh tế chưa cao.

Lời giải

Phân tích nội dung các đáp án, ta thấy:

A. GNI bình quân đầu người rất cao. → Sai

B. đã phát triển mạnh nền kinh tế tri thức. → Sai

C. chỉ số phát triển con người rất cao. → Sai

D. trình độ phát triển kinh tế chưa cao. → Đúng. Chọn D.

Câu 2

A. 5 cm.                             

B. 7 cm.                        
C. 6 cm.                        
D. 6,5 cm.

Lời giải

Dựa vào đồ thị thấy động năng bằng thế năng ứng với các vị trí li độ là: \[\left\{ \begin{array}{l}{x_{d1}} = - 3\,cm\\{x_{t2}} = 4\,cm\end{array} \right.\]

\[{{\rm{W}}_{d1}} = {{\rm{W}}_{t2}} \Leftrightarrow \frac{1}{2}k{A^2} - \frac{1}{2}kx_{d1}^2 = \frac{1}{2}kx_{t2}^2 \Leftrightarrow {A^2} - x_{d1}^2 = x_{t2}^2 \Leftrightarrow A = \sqrt {x_{d1}^2 + x_{t2}^2} = 5\,cm.\] Chọn A.

Câu 3

A. đầu tư nhiều vào kHoa học kĩ thuật. 
B. sử dụng rộng rãi máy móc hiện đại. 
C. tăng cường hội nhập kinh tế quốc tế. 
D. tích cực mở rộng diện tích trồng trọt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Bờ biển dài, nhiều đầm phá. 
B. Các tỉnh/thành phố đều giáp biển.
C. Có nhiều vịnh biển sâu, kín gió. 
D. Ít chịu ảnh hưởng của bão.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Amylopectin. 
B. Polyethylene. 
C. Amylose. 
D. Poly(vinyl chloride).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP