Câu hỏi:

30/07/2024 123

Cho hàm số \({\rm{y}} = {\rm{f}}\left( {\rm{x}} \right)\) có đạo hàm trên \(\mathbb{R}\) và \({\rm{f}}\left( 1 \right) = 1\). Đồ thị hàm số \({\rm{y}} = {\rm{f'}}\left( {\rm{x}} \right)\) như hình bên. Có bao nhiêu số nguyên dương a để hàm số \(y = \left| {4{\rm{f}}\left( {\sin x} \right) + \cos 2x - a} \right|\) nghịch biến trên \(\left( {0\,;\,\,\frac{\pi }{2}} \right)?\)     

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(y = \left| {4{\rm{f}}\left( {\sin x} \right) + \cos 2x - a} \right| = \left| {4f\left( {\sin x} \right) - 2{{\sin }^2}x + 1 - a} \right|.\)

Đặt \(t = \sin x\,,\,\,t \in \left( {0\,;\,\,1} \right)\) do \(x \in \left( {0\,;\,\,\frac{\pi }{2}} \right)\).

Bài toán trở thành: Có bao nhiêu số nguyên dương \[a\] để hàm số \({\rm{y}} = \left| {4{\rm{f}}\left( {\rm{t}} \right) - 2{{\rm{t}}^2} + 1 - {\rm{a}}} \right|\) nghịch biến trên khoảng \(\left( {0\,;\,\,1} \right)\).

Ta có: \[{\rm{y'}} = \frac{{\left[ {4{\rm{f'}}\left( {\rm{t}} \right) - 4{\rm{t}}} \right]\left[ {4{\rm{f}}\left( {\rm{t}} \right) - 2{{\rm{t}}^2} + 1 - {\rm{a}}} \right]}}{{\left| {4{\rm{f}}\left( {\rm{t}} \right) - 2{{\rm{t}}^2} + 1 - {\rm{a}}} \right|}} \le 0\,,\,\,\forall {\rm{t}} \in \left( {0\,;\,\,1} \right)\,\,(*).\]

Với \({\rm{t}} \in \left( {0\,;\,\,1} \right)\) thì đồ thị hàm số \({\rm{y}} = {\rm{f'}}\left( {\rm{t}} \right)\) nằm phía dưới trục \({\rm{Ox}}\)

\( \Rightarrow {\rm{f'}}\left( {\rm{t}} \right) < 0\,,\,\,\forall {\rm{t}} \in \left( {0\,;\,\,1} \right) \Rightarrow {\rm{f'}}\left( {\rm{t}} \right) - {\rm{t}} < 0\,,\,\,\forall {\rm{t}} \in \left( {0\,;\,\,1} \right)\)

Khi đó: \((*) \Leftrightarrow 4f\left( {\rm{t}} \right) - 2{t^2} + 1 - a \ge 0\,,\,\,\forall {\rm{t}} \in \left( {0\,;\,\,1} \right) \Leftrightarrow a \le 4f\left( {\rm{t}} \right) - 2{t^2} + 1\,,\,\,\forall {\rm{t}} \in \left( {0\,;\,\,1} \right)\).

Xét hàm số \({\rm{g}}\left( {\rm{t}} \right) = 4{\rm{f}}\left( {\rm{t}} \right) - 2{{\rm{t}}^2} + 1\) trên \(\left( {0\,;\,\,1} \right)\).

Ta có \(g'\left( {\rm{t}} \right) = 4f'\left( {\rm{t}} \right) - 4t < 0 \Rightarrow g\left( {\rm{t}} \right) > g\left( 1 \right) = 4f\left( 1 \right) - 2 \cdot 1 + 1 = 3\,,\,\,\forall {\rm{t}} \in \left( {0\,;\,\,1} \right)\).

Do đó \(a \le 3 < g\left( {\rm{t}} \right)\,,\,\,\forall {\rm{t}} \in \left( {0\,;\,\,1} \right)\). Vậy \(0 < a \le 3 \Rightarrow a \in \left\{ {1\,;\,\,2\,;\,\,3} \right\}\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phân tích nội dung các đáp án, ta thấy:

A. GNI bình quân đầu người rất cao. → Sai

B. đã phát triển mạnh nền kinh tế tri thức. → Sai

C. chỉ số phát triển con người rất cao. → Sai

D. trình độ phát triển kinh tế chưa cao. → Đúng. Chọn D.

Câu 2

Lời giải

Nông nghiệp Liên bang Nga phát triển mạnh từ năm 2000 đến nay không phải là do tích cực mở rộng diện tích trồng trọt mà do sử dụng kỹ thuật hiện đại, nâng cao năng suất. Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP