Câu hỏi:

30/07/2024 166

Tập hợp tất cả các giá trị của tham số thực \(m\) để hàm số \({\rm{y}} = - {{\rm{x}}^3} - 6{{\rm{x}}^2} + \left( {4\;{\rm{m}} - 2} \right){\rm{x}} + 2\) nghịch biến trên khoảng \(\left( { - \infty \,;\,\,0} \right)\) là 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(y' = - 3{x^2} - 12x + 4m - 2\).

Hàm số nghịch biến trên khoảng \(\left( { - \infty \,;\,\,0} \right)\) khi \(y' \le 0\,\,\,\forall x \in \left( { - \infty \,;\,\,0} \right)\)

\( \Leftrightarrow - 3{x^2} - 12x + 4m - 2 \le 0\,\,\forall x \in \left( { - \infty \,;\,\,0} \right) \Leftrightarrow 4m \le 3{x^2} + 12x + 2\,\,\,\forall x \in \left( { - \infty \,;\,\,0} \right)\).

Đặt \(f\left( x \right) = 3{x^2} + 12x + 2\)\(f'\left( x \right) = 6x + 12\). Ta có bảng biến thiên của \(f\left( x \right)\):

Tập hợp tất cả các giá trị của tham số thực \(m\) để hàm số nghịch biến trên khoảng \(\left( { - \infty \,;\,\,0} \right)\) là 	 (ảnh 1)

Dựa vào bảng biến thiên ta thấy \(4m \le 3{x^2} + 12x + 2\,\,\,\forall x \in \left( { - \infty \,;\,\,0} \right) \Leftrightarrow 4m \le - 10 \Leftrightarrow m \le - \frac{5}{2}\).

Vậy \(m \le - \frac{5}{2}\) hàm số nghịch biến trên khoảng \(\left( { - \infty \,;\,\,0} \right)\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Thu nhập bình quân, cơ cấu ngành kinh tế, chỉ số phát triển con người là những tiêu chí cơ bản để phân biệt các nhóm nước. Chọn A.

Câu 2

Lời giải

Đất đai ở các đồng bằng miền Đông Trung Quốc khá màu mõ̃ do phù sa sông bồi đắp. Đồng bằng nào cũng chủ yếu được bồi đắp bởi phù sa sông. Chọn A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP