Câu hỏi:

30/07/2024 134

Gọi \(G\) là trọng tâm tứ diện \[ABCD.\] Gọi \({\rm{A'}}\) là trọng tâm của tam giác \[BCD.\] Tính tỉ số \(\frac{{{\rm{GA}}}}{{{\rm{GA'}}}}\). 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gọi \(G\) là trọng tâm tứ diện \[ABCD.\] Gọi \({\rm{A'}}\) là trọng tâm của tam giác \[BCD.\] Tính tỉ số \(\frac{{{\rm{GA}}}}{{{\rm{GA'}}}}\). 	A. 2 .	B. 3 .	C. \(\frac{1}{3}\).	D. \(\frac{1}{2}\). (ảnh 1)

Gọi \[E\] là trọng tâm của tam giác \({\rm{ACD}},\,\,{\rm{M}}\) là trung điểm của \[CD.\]

Nối \[BE\] cắt \(AA'\) tại \(G\) suy ra \(G\) là trọng tâm tứ diện.

Xét \({\mathop{\rm tam}\nolimits} \) giác \({\rm{MAB}}\), có \(\frac{{{\rm{ME}}}}{{{\rm{MA}}}} = \frac{{{\rm{M}}A'}}{{{\rm{MB}}}} = \frac{1}{3}\) suy ra \(A'{\rm{E}}\,{\rm{//}}\,{\rm{AB}}{\rm{.}}\)

\( \Rightarrow \frac{{A'{\rm{E}}}}{{{\rm{AB}}}} = \frac{1}{3}\). Theo định lí Thalès \[\frac{{A'{\rm{E}}}}{{{\rm{AB}}}} = \frac{{A'{\rm{G}}}}{{{\rm{AG}}}} = \frac{1}{3} \Rightarrow \frac{{{\rm{GA}}}}{{GA'}} = 3\]. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Thu nhập bình quân, cơ cấu ngành kinh tế, chỉ số phát triển con người là những tiêu chí cơ bản để phân biệt các nhóm nước. Chọn A.

Câu 2

Lời giải

Đất đai ở các đồng bằng miền Đông Trung Quốc khá màu mõ̃ do phù sa sông bồi đắp. Đồng bằng nào cũng chủ yếu được bồi đắp bởi phù sa sông. Chọn A.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP