Câu hỏi:
30/07/2024 42Trong không gian với hệ trục tọa độ \({\rm{Oxyz}}\), cho tam giác \({\rm{ABC}}\) có tọa độ các đỉnh \(A\left( {7\,;\,\,0\,;\,\,3} \right),\,\,B\left( { - 2\,;\,\,1\,;\,\,4} \right),\,\,C\left( {1\,;\,\,2\,;\,\,2} \right)\) và \(G\left( {a\,;\,\,b\,;\,\,c} \right)\) là trọng tâm của tam giác \[ABC.\] Giá trị của biểu thức \(P = abc\) là
Đáp án: ……….
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có tọa độ trọng tâm \[G\] của tam giác \({\rm{ABC}}\) được tính theo công thức:
\({\rm{a}} = \frac{{7 - 2 + 1}}{3} = 2\,;\,\,{\rm{b}} = \frac{{0 + 1 + 2}}{3} = 1\,;\,\,{\rm{c}} = \frac{{3 + 4 + 2}}{3} = 3\).
Do đó \(P = abc = 6\). Đáp án: 6.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(F\left( x \right) = \frac{1}{{40}}{x^2}\left( {30 - x} \right)\), trong đó \(x\) là liều lượng thuốc tiêm cho bệnh nhân (\(x\) được tính bằng miligam) và \(x \in \left[ {0\,;\,\,30} \right].\)Hãy tìm liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất.
Đáp án: ……….
Câu 3:
Câu 4:
về câu hỏi!