Câu hỏi:
30/07/2024 102Đáp án: ……….
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \({S_1} = \int\limits_{{x_1}}^{{x_2}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx\,;\,\,{S_2} = \int\limits_{{x_2}}^{{x_3}} {\left[ {g\left( x \right) - f\left( x \right)} \right]dx} } \)
Khi đó \(\int\limits_{{x_1}}^{{x_3}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int\limits_{{x_1}}^{{x_2}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} + \int\limits_{{x_2}}^{{x_3}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \).
Do đó \(\int\limits_{{x_1}}^{{x_2}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} - \int\limits_{{x_2}}^{{x_3}} {\left[ {g\left( x \right) - f\left( x \right)} \right]dx} = {S_1} - {S_2} = 10 - 7 = 3\). Đáp án: 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(F\left( x \right) = \frac{1}{{40}}{x^2}\left( {30 - x} \right)\), trong đó \(x\) là liều lượng thuốc tiêm cho bệnh nhân (\(x\) được tính bằng miligam) và \(x \in \left[ {0\,;\,\,30} \right].\)Hãy tìm liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất.
Đáp án: ……….
Câu 3:
Câu 4:
về câu hỏi!