Cho \(\left( {{C_\alpha }} \right):{\mkern 1mu} {\mkern 1mu} {x^2} + {y^2} - 2x\cos \alpha - 2y\sin \alpha + \cos 2\alpha = 0\) (với \(\alpha \ne k\pi \)). Xác định \(\alpha \) để \(\left( {{C_\alpha }} \right)\) có bán kính lớn nhất.
Cho \(\left( {{C_\alpha }} \right):{\mkern 1mu} {\mkern 1mu} {x^2} + {y^2} - 2x\cos \alpha - 2y\sin \alpha + \cos 2\alpha = 0\) (với \(\alpha \ne k\pi \)). Xác định \(\alpha \) để \(\left( {{C_\alpha }} \right)\) có bán kính lớn nhất.
Quảng cáo
Trả lời:
Bán kính của đường tròn \(\left( {{C_\alpha }} \right):{\mkern 1mu} {\mkern 1mu} {x^2} + {y^2} - 2x\cos \alpha - 2y\sin \alpha + \cos 2\alpha = 0\) là:
\(R = \sqrt {c{\rm{o}}{{\rm{s}}^2}\alpha + {{\sin }^2}\alpha - c{\rm{os}}2\alpha } = \sqrt {1 - c{\rm{os}}2\alpha } = \sqrt {2{{\sin }^2}\alpha } \)
Ta có \(2{\sin ^2}\alpha \le 2\,\,\forall \alpha \) nên \[R \le \sqrt 2 \].
Dấu xảy ra \[\sin \alpha = 1 \Leftrightarrow \alpha = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right).\]
Vậy \[{R_{m{\rm{ax}}}} = \sqrt 2 \Leftrightarrow \alpha = \frac{\pi }{2} + k2\pi \].
Chọn B
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Diện tích rừng giàu chiếm tỉ lệ lớn là không đúng với rừng nước ta. Nước ta còn ít rừng giàu. Chọn C.
Câu 2
Lời giải
Xếp 4 bạn nữ đứng cạnh nhau có \[4!\] (cách).
Xếp 5 bạn nam và 4 bạn nữ đứng cạnh nhau có \[6!\] (cách).
Số cách xếp thỏa mãn đề bài là: \(4!\,.\,\,6! = 17\,\,280\) (cách). Chọn D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Hình 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
