Câu hỏi:

05/08/2024 137

Cho các số thực \[a,\,\,b,\,\,x,\,\,y\] thoả mãn \(a > 1\,,\,\,b > 1\)\({a^{x + y}} = {b^{x - y}} = \sqrt[3]{{ab}}\). Giá trị nhỏ nhất của biểu thức \(P = 6x + 4y - 2\)\(\frac{{\sqrt m }}{n}\). Tính \(m - 3n\).

Đáp án: ……….

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ giả thiết \({a^{x + y}} = {b^{x - y}} = \sqrt[3]{{ab}} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x + y = {{\log }_a}\sqrt[3]{{ab}} = \frac{1}{3}\left( {1 + {{\log }_a}b} \right)}\\{x - y = {{\log }_b}\sqrt[3]{{ab}} = \frac{1}{3}\left( {1 + {{\log }_b}a} \right)}\end{array}} \right.\).

Đặt \({\log _a}b = t\,\,(t > 0)\). Khi đó \(x = \frac{1}{6}\left( {2 + t + \frac{1}{t}} \right),y = \frac{1}{6}\left( {t - \frac{1}{t}} \right)\).

Suy ra: \(P = 6x + 4y - 2 = 2 + t + \frac{1}{t} + \frac{2}{3}t - \frac{2}{{3t}} - 2 = \frac{5}{3}t + \frac{1}{{3t}} = \frac{1}{3}\left( {5t + \frac{1}{t}} \right) \ge \frac{{2\sqrt 5 }}{3} = \frac{{\sqrt {20} }}{3}\).

Dấu bằng xảy ra khi \(t = \frac{1}{{\sqrt 5 }}\). Suy ra \(m = 20,n = 3 \Rightarrow m - 3n = 11\).

Đáp án: 11.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Diện tích rừng giàu chiếm tỉ lệ lớn là không đúng với rừng nước ta. Nước ta còn ít rừng giàu. Chọn C.

Lời giải

Xếp 4 bạn nữ đứng cạnh nhau có \[4!\] (cách).

Xếp 5 bạn nam và 4 bạn nữ đứng cạnh nhau có \[6!\] (cách).

Số cách xếp thỏa mãn đề bài là: \(4!\,.\,\,6! = 17\,\,280\) (cách). Chọn D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP