Cho nửa đường tròn (O; R) có BC là đường kính. Lấy điểm A trên tia đối của tia CB. Kẻ tiếp tuyến AF, Bx của nửa đường tròn (O) (F là tiếp điểm), tia AF cắt tia Bx tại D. Chứng minh OBDF là tứ giác nội tiếp.
Cho nửa đường tròn (O; R) có BC là đường kính. Lấy điểm A trên tia đối của tia CB. Kẻ tiếp tuyến AF, Bx của nửa đường tròn (O) (F là tiếp điểm), tia AF cắt tia Bx tại D. Chứng minh OBDF là tứ giác nội tiếp.
Quảng cáo
Trả lời:

Gọi I là trung điểm của DO.
Ta có BD và AD là tiếp tuyến của đường tròn (O; R) nên \(\widehat {DBO} = 90^\circ \) và \(\widehat {DFO} = 90^\circ .\)
Tam giác DBO vuông tại O nên tam giác này nội tiếp đường tròn tâm I, bán kính bằng \(\frac{1}{2}DO.\)
Tương tự, tam giác DFO vuông tại F nên nội tiếp đường tròn tâm I, bán kính bằng \(\frac{1}{2}DO.\)
Do đó, tứ giác OBDF nội tiếp đường tròn tâm I, bán kính bằng \(\frac{1}{2}DO.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

⦁ Ta có: AB = AC (tính chất hai tiếp tuyến cắt nhau) và OA = OB = R.
Suy ra OA là đường trung trực của đoạn thẳng BC, do đó OA ⊥ BC nên \(\widehat {AHC} = 90^\circ .\)
⦁ Ta có \(\widehat {CMD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O) đường kính CD), suy ra \(\widehat {AMC} = 90^\circ .\)
Khi đó, tam giác AMC vuông tại M và tam giác AHC vuông tại H cùng nội tiếp đường tròn đường kính AC.
Do đó, tứ giác AMHC nội tiếp đường tròn đường kính AC.
Lời giải

Ta có \(\widehat {HCB} = 90^\circ \) (do MN ⊥ OA tại C), \(\widehat {AKB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn (O) đường kính AB) hay \(\widehat {HKB} = 90^\circ .\)
Khi đó, tam giác BCH vuông tại C và tam giác BKH vuông tại K cùng nội tiếp đường tròn đường kính HB.
Do đó, tứ giác BCHK nội tiếp đường tròn đường kính HB.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.