Cho hàm số \[y = f\left( x \right)\] có bảng xét dấu đạo hàm \(y'\) như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
Cho hàm số \[y = f\left( x \right)\] có bảng xét dấu đạo hàm \(y'\) như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
Quảng cáo
Trả lời:
Đáp án đúng là: C
Từ bảng xét dấu, ta thấy: Trên khoảng \(\left( {3;7} \right)\), \(y' < 0\), do đó hàm số đã cho nghịch biến trên khoảng này.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Giả sử miếng bìa hình vuông \(ABCD\), đáy của hình chóp tứ giác đều là hình vuông \(MNPQ\) tâm \(O\) có cạnh bằng \(x\) dm \(\left( {0 < x < 6\sqrt 2 } \right)\) như hình vẽ. Gọi \(H,\,K\) lần lượt là trung điểm của \(MQ\) và \(NP\).
Vì \(ABCD\) là hình vuông cạnh bằng 6 dm nên \(AC = 6\sqrt 2 \) dm, \(HK = x\) dm.
Ta có \(AH = \frac{{AC - HK}}{2} = 3\sqrt 2 - \frac{x}{2}\) dm.
Đường cao của hình chóp tứ giác đều là:
\(h = AO = \sqrt {A{H^2} - O{H^2}} = \sqrt {{{\left( {3\sqrt 2 - \frac{x}{2}} \right)}^2} - {{\left( {\frac{x}{2}} \right)}^2}} = \sqrt {18 - 3\sqrt 2 x} \) (dm).
Thể tích của khối chóp là:
\(V = \frac{1}{3}h{x^2} = \frac{1}{3}{x^2}\sqrt {18 - 3\sqrt 2 x} = \frac{1}{3}\sqrt {{x^4}\left( {18 - 3\sqrt 2 x} \right)} \) (dm3).
Để tìm giá trị lớn nhất của \(V\) ta đi tìm giá trị lớn nhất của hàm số
\(f\left( x \right) = {x^4}\left( {18 - 3\sqrt 2 x} \right)\) với \(0 < x \le 3\sqrt 2 \).
Ta có: \(f'\left( x \right) = {x^3}\left( { - 15\sqrt 2 x + 72} \right)\), \(f'\left( x \right) = 0\) khi \(x = 0\) hoặc \(x = \frac{{12\sqrt 2 }}{5}\).
Bảng biến thiên của hàm số \(f\left( x \right)\) như sau:
Từ bảng biến thiên, ta có \(\mathop {\max }\limits_{\left( {0;3\sqrt 2 } \right]} f\left( x \right) = f\left( {\frac{{12\sqrt 2 }}{5}} \right) \approx 477,76\).
Vậy thể tích của khối chóp có giá trị lớn nhất bằng \({V_{\max }} \approx \frac{1}{3}\sqrt {477,76} \approx 7,3\) (dm3).
Đáp số: \(7,3\).
Lời giải
Ta có: \(\overrightarrow {AB'} \cdot \overrightarrow {BC'} = \left( {\overrightarrow {AB} + \overrightarrow {BB'} } \right)\left( {\overrightarrow {BC} + \overrightarrow {CC'} } \right)\)
\( = \overrightarrow {AB} \cdot \overrightarrow {BC} + \overrightarrow {AB} \cdot \overrightarrow {CC'} + \overrightarrow {BB'} \cdot \overrightarrow {BC} + \overrightarrow {BB'} \cdot \overrightarrow {CC'} \)
\( = - \overrightarrow {BA} \cdot \overrightarrow {BC} + 0 + 0 + \overrightarrow {BB'} \cdot \overrightarrow {BB'} \)
\( = - BA \cdot BC \cdot \cos \widehat {ABC} + {\overrightarrow {BB'} ^2}\)
\( = - a \cdot a \cdot \cos 60^\circ + {\left( {a\sqrt 2 } \right)^2} = - \frac{{{a^2}}}{2} + 2{a^2} = \frac{{3{a^2}}}{2}\).
Khi đó, \(\cos \left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = \frac{{\overrightarrow {AB'} \cdot \,\overrightarrow {BC'} }}{{\left| {\overrightarrow {AB'} } \right| \cdot \,\left| {\overrightarrow {BC'} } \right|}} = \frac{{\frac{{3{a^2}}}{2}}}{{a\sqrt 3 \cdot a\sqrt 3 }} = \frac{1}{2}\). Suy ra \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = 60^\circ \).
Đáp số: \(60\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
