Cho đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\) (với \(c \ne 0\)) có đồ thị như hình dưới đây.
Biết rằng \(a\) là số thực dương, hỏi trong các số \(b,c,d\) có bao nhiêu số dương?
Cho đồ thị hàm số \(y = \frac{{ax + b}}{{cx + d}}\) (với \(c \ne 0\)) có đồ thị như hình dưới đây.
Biết rằng \(a\) là số thực dương, hỏi trong các số \(b,c,d\) có bao nhiêu số dương?
Quảng cáo
Trả lời:
Đáp án đúng là: C
Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - \frac{d}{c}} \right\}\).
Ta có: \(y' = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\).
Tiệm cận ngang của đồ thị hàm số: \(y = \frac{a}{c} > 0 \Rightarrow c > 0\) (do \(a > 0\)).
Tiệm cận đứng của đồ thị hàm số: \(x = - \frac{d}{c} < 0 \Rightarrow d > 0\).
Đồ thị hàm số cắt trục hoành tại điểm có hoành độ \({x_0} = - \frac{b}{a} > 0 \Rightarrow b < 0\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Giả sử miếng bìa hình vuông \(ABCD\), đáy của hình chóp tứ giác đều là hình vuông \(MNPQ\) tâm \(O\) có cạnh bằng \(x\) dm \(\left( {0 < x < 6\sqrt 2 } \right)\) như hình vẽ. Gọi \(H,\,K\) lần lượt là trung điểm của \(MQ\) và \(NP\).
Vì \(ABCD\) là hình vuông cạnh bằng 6 dm nên \(AC = 6\sqrt 2 \) dm, \(HK = x\) dm.
Ta có \(AH = \frac{{AC - HK}}{2} = 3\sqrt 2 - \frac{x}{2}\) dm.
Đường cao của hình chóp tứ giác đều là:
\(h = AO = \sqrt {A{H^2} - O{H^2}} = \sqrt {{{\left( {3\sqrt 2 - \frac{x}{2}} \right)}^2} - {{\left( {\frac{x}{2}} \right)}^2}} = \sqrt {18 - 3\sqrt 2 x} \) (dm).
Thể tích của khối chóp là:
\(V = \frac{1}{3}h{x^2} = \frac{1}{3}{x^2}\sqrt {18 - 3\sqrt 2 x} = \frac{1}{3}\sqrt {{x^4}\left( {18 - 3\sqrt 2 x} \right)} \) (dm3).
Để tìm giá trị lớn nhất của \(V\) ta đi tìm giá trị lớn nhất của hàm số
\(f\left( x \right) = {x^4}\left( {18 - 3\sqrt 2 x} \right)\) với \(0 < x \le 3\sqrt 2 \).
Ta có: \(f'\left( x \right) = {x^3}\left( { - 15\sqrt 2 x + 72} \right)\), \(f'\left( x \right) = 0\) khi \(x = 0\) hoặc \(x = \frac{{12\sqrt 2 }}{5}\).
Bảng biến thiên của hàm số \(f\left( x \right)\) như sau:
Từ bảng biến thiên, ta có \(\mathop {\max }\limits_{\left( {0;3\sqrt 2 } \right]} f\left( x \right) = f\left( {\frac{{12\sqrt 2 }}{5}} \right) \approx 477,76\).
Vậy thể tích của khối chóp có giá trị lớn nhất bằng \({V_{\max }} \approx \frac{1}{3}\sqrt {477,76} \approx 7,3\) (dm3).
Đáp số: \(7,3\).
Lời giải
Ta có: \(\overrightarrow {AB'} \cdot \overrightarrow {BC'} = \left( {\overrightarrow {AB} + \overrightarrow {BB'} } \right)\left( {\overrightarrow {BC} + \overrightarrow {CC'} } \right)\)
\( = \overrightarrow {AB} \cdot \overrightarrow {BC} + \overrightarrow {AB} \cdot \overrightarrow {CC'} + \overrightarrow {BB'} \cdot \overrightarrow {BC} + \overrightarrow {BB'} \cdot \overrightarrow {CC'} \)
\( = - \overrightarrow {BA} \cdot \overrightarrow {BC} + 0 + 0 + \overrightarrow {BB'} \cdot \overrightarrow {BB'} \)
\( = - BA \cdot BC \cdot \cos \widehat {ABC} + {\overrightarrow {BB'} ^2}\)
\( = - a \cdot a \cdot \cos 60^\circ + {\left( {a\sqrt 2 } \right)^2} = - \frac{{{a^2}}}{2} + 2{a^2} = \frac{{3{a^2}}}{2}\).
Khi đó, \(\cos \left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = \frac{{\overrightarrow {AB'} \cdot \,\overrightarrow {BC'} }}{{\left| {\overrightarrow {AB'} } \right| \cdot \,\left| {\overrightarrow {BC'} } \right|}} = \frac{{\frac{{3{a^2}}}{2}}}{{a\sqrt 3 \cdot a\sqrt 3 }} = \frac{1}{2}\). Suy ra \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = 60^\circ \).
Đáp số: \(60\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
