Câu hỏi:

01/10/2024 177

Cho hàm số \[y = f\left( x \right)\] có đồ thị là đường cong \(\left( C \right)\) và các giới hạn \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 1\); \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 1\); \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2;\,\,\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\). Hỏi mệnh đề nào sau đây đúng?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

\(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = 2;\,\,\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\) nên đường thẳng \(y = 2\) là tiệm cận ngang của \(\left( C \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ngân có một tấm giấy màu có dạng nửa hình tròn bán kính 8 cm. Ngân cần cắt từ tấm giấy màu này ra một tấm giấy hình chữ nhật có một cạnh thuộc đường kính của nửa hình tròn (xem hình dưới) sao cho diện tích của tấm bìa được cắt ra là lớn nhất. Giá trị lớn nhất của diện tích tấm bìa đó là bao nhiêu centimét vuông?

Ngân có một tấm giấy màu có dạng nửa  (ảnh 1)

Xem đáp án » 01/10/2024 29,242

Câu 2:

Ông Hùng cần đóng một thùng chứa gạo có dạng hình hộp chữ nhật không có nắp đậy để phục vụ cho việc trưng bày gạo bán tại cửa hàng. Do các điều kiện về diện tích cửa hàng và kệ trưng bày, ông Hùng cần thùng có thể tích bằng \(2\) m3. Trên thị trường, giá tôn làm đáy thùng là 100 000 đồng/m2 và giá tôn làm thành xung quanh thùng là 50 000 đồng/m2. Hỏi ông Hùng cần đóng thùng chứa gạo với cạnh đáy bằng bao nhiêu mét để chi phí mua nguyên liệu là nhỏ nhất, biết đáy thùng là hình vuông và các mối nối không đáng kể (làm tròn kết quả đến hàng phần mười).

Xem đáp án » 01/10/2024 25,407

Câu 3:

Độ lớn của các lực căng trên mỗi sợi dây cáp trong hình dưới đây bằng bao nhiêu Newton? Biết rằng khối lượng xe là 1 500 kg, gia tốc là 9,8 m/s2, khung nâng có khối lượng 300 kg và có dạng hình chóp \(S.ABCD\) với đáy \(ABCD\) là hình chữ nhật tâm \(O\), \(AB = 8\) m, \(BC = 12\) m, \(SC = 12\) m và \(SO\) vuông góc với \(\left( {ABCD} \right)\). Làm tròn kết quả đến hàng đơn vị của Newton.

Độ lớn của các lực căng trên mỗi sợi dây cáp (ảnh 1)

Xem đáp án » 01/10/2024 21,714

Câu 4:

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\). Khi đó:

a) \(\overrightarrow {A'D} = \overrightarrow {BC'} \).

b) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {DA} \).

c) \(\overrightarrow {C'A} = \overrightarrow {C'B'} + \overrightarrow {C'D'} + \overrightarrow {A'A} \).

d) Góc giữa hai vectơ \(\overrightarrow {AD} \)\(\overrightarrow {A'B'} \) bằng \(45^\circ \).

Xem đáp án » 01/10/2024 15,227

Câu 5:

Cho hình chóp tứ giác đều \(S.ABCD\) có độ dài tất cả các cạnh đều bằng \(a\). Đáy \(ABCD\) có tâm là \(O\). Khi đó:

a) \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = 4\overrightarrow {SO} \).

b) \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).

c) \(\left( {\overrightarrow {SA} ,\,\overrightarrow {AC} } \right) = 45^\circ \).

d) \(\overrightarrow {SA} \cdot \overrightarrow {AC} = - {a^2}\).

Xem đáp án » 01/10/2024 4,911

Câu 6:

Cho hình lăng trụ \(ABC.A'B'C'\) có hai đáy là các tam giác đều như hình dưới.
Góc giữa hai vectơ BC và vecto A'C' bằng (ảnh 1)

Góc giữa hai vectơ \(\overrightarrow {BC} \)\(\overrightarrow {A'C'} \) bằng

Xem đáp án » 01/10/2024 4,391

Câu 7:

Hàm số \(y = f\left( x \right) = 2{x^3} - 9{x^2} - 24x + 1\) nghịch biến trên khoảng:

Xem đáp án » 01/10/2024 3,443

Bình luận


Bình luận