Câu hỏi:
01/10/2024 21,636
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\). Khi đó:
a) \(\overrightarrow {A'D} = \overrightarrow {BC'} \).
b) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {DA} \).
c) \(\overrightarrow {C'A} = \overrightarrow {C'B'} + \overrightarrow {C'D'} + \overrightarrow {A'A} \).
d) Góc giữa hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {A'B'} \) bằng \(45^\circ \).
Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\). Khi đó:
a) \(\overrightarrow {A'D} = \overrightarrow {BC'} \).
b) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {DA} \).
c) \(\overrightarrow {C'A} = \overrightarrow {C'B'} + \overrightarrow {C'D'} + \overrightarrow {A'A} \).
d) Góc giữa hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {A'B'} \) bằng \(45^\circ \).
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Chân Trời Sáng Tạo có đáp án !!
Quảng cáo
Trả lời:
. a) S, b) S, c) Đ, d) S.
Hướng dẫn giải

– Vì \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên \(A'DCB'\) là hình bình hành.
Do đó, \(\overrightarrow {A'D} = \overrightarrow {B'C} \).
Mà hai vectơ \(\overrightarrow {B'C} \) và \(\overrightarrow {BC'} \) không cùng phương nên hai vectơ \(\overrightarrow {A'D} \) và \(\overrightarrow {BC'} \) cũng không cùng phương. Vậy ý a) sai.
– Theo quy tắc ba điểm, ta có \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AD} \ne \overrightarrow {DA} \) nên ý b) sai.
– Do \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên ta có \(\overrightarrow {A'A} = \overrightarrow {C'C} \).
Áp dụng quy tắc hình hộp cho hình hộp chữ nhật \(ABCD.A'B'C'D'\), ta có:
\(\overrightarrow {C'A} = \overrightarrow {C'B'} + \overrightarrow {C'D'} + \overrightarrow {C'C} = \overrightarrow {C'B'} + \overrightarrow {C'D'} + \overrightarrow {A'A} \). Vậy ý c) đúng.
– Ta có \(\overrightarrow {AD} = \overrightarrow {A'D'} \) nên \(\left( {\overrightarrow {AD} ,\,\overrightarrow {A'B'} } \right) = \left( {\overrightarrow {A'D'} ,\,\overrightarrow {A'B'} } \right) = \widehat {B'A'D'} = 90^\circ \). Vậy ý d) sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi \(x\,\,\left( {{\rm{cm}}} \right)\) là độ dài một cạnh của tấm giấy hình chữ nhật được cắt ra (cạnh thuộc đường kính) và \(y\,\,\left( {{\rm{cm}}} \right)\) là độ dài cạnh còn lại \((0 < x < 16,\,\,0 < y < 8)\). Ta có:
\({\left( {\frac{x}{2}} \right)^2} + {y^2} = {8^2} \Leftrightarrow {y^2} = \frac{1}{4}\left( {256 - {x^2}} \right) \Leftrightarrow y = \frac{1}{2}\sqrt {256 - {x^2}} \).
Diện tích của tấm giấy hình chữ nhật đó là:
\(S = xy = x \cdot \frac{1}{2}\sqrt {256 - {x^2}} = \frac{1}{2}\sqrt {{x^2}\left( {256 - {x^2}} \right)} \) (cm2).
Đặt \(f\left( x \right) = {x^2}\left( {256 - {x^2}} \right)\) với \(0 < x < 16\), có \(f'\left( x \right) = 512x - 4{x^3}\) nên \(f'\left( x \right) = 0\) khi \(x = 8\sqrt 2 \).
Vậy giá trị lớn nhất của \(S\) bằng \(\frac{1}{2}\sqrt {f\left( {8\sqrt 2 } \right)} = 64\,\,\,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Đáp số: \(64\).
Lời giải
Gọi độ dài cạnh đáy của thùng chứa gạo là \(x\) (m, \(x > 0\)) và chiều cao của thùng chứa gạo là \(h\) (m, \(h > 0\)).
Thể tích của thùng là \(V = {x^2} \cdot h = 2\), suy ra \(h = \frac{2}{{{x^2}}}\) (m).
Khi đó, diện tích tôn cần sử dụng là: \[S = {x^2} + 4xh = {x^2} + 4x \cdot \frac{2}{{{x^2}}} = {x^2} + \frac{8}{x}\] (m2).
Chi phí để mua nguyên liệu là: \(T = 100{x^2} + 50 \cdot \frac{8}{x} = 100{x^2} + \frac{{400}}{x}\) (nghìn đồng).
Xét hàm số \(T\left( x \right) = 100{x^2} + \frac{{400}}{x}\) với \(x \in \left( {0; + \infty } \right)\).
Ta có: \(T'\left( x \right) = 200x - \frac{{400}}{{{x^2}}} = \frac{{200{x^3} - 400}}{{{x^2}}}\); \(T'\left( x \right) = 0\) khi \(x = \sqrt[3]{2}\).
Bảng biến thiên của hàm số \(T\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\) như sau:

Từ bảng biến thiên ta thấy, \(T\left( x \right)\) đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\) khi \(x = \sqrt[3]{2}\).
Vậy ông Hùng cần đóng thùng chứa gạo với cạnh đáy bằng \(\sqrt[3]{2} \approx 1,3\) m để chi phí mua nguyên liệu là nhỏ nhất.
Đáp số: \(1,3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.