Cặp số nào sau đây là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9\end{array} \right.?\)
Quảng cáo
Trả lời:
Đáp án đúng là: C
Cách 1. Sử dụng MTCT để tìm nghiệm của hệ hai phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9.\end{array} \right.\)
Với MTCT phù hợp, ta bấm lần lượt các phím:

Trên màn hình cho kết quả \(x = - 21,\) ta bấm tiếp phím màn hình cho kết quả \(y = 15.\)
Vậy cặp số \(\left( { - 21;\,\,15} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9.\end{array} \right.\)
Cách 2. Thay \(x = 1;\,\,y = 1\) vào hệ phương trình đã cho, ta được: \(\left\{ \begin{array}{l}2 \cdot 1 + 3 \cdot 1 = 5\,\,\left( { \ne 3} \right)\\ - 4 \cdot 1 - 5 \cdot 1 = - 9\,\,\left( { \ne 9} \right)\end{array} \right..\)
Tương tự, thay giá trị của \(x\) và \(y\) lần lượt của các cặp số ở phương án B, C, D vào hệ phương trình đã cho, ta thấy chỉ có cặp số \(\left( { - 21;\,\,15} \right)\) là nghiệm của cả hai phương trình trong hệ.
Vậy cặp số \(\left( { - 21;\,\,15} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9.\end{array} \right.\)
Cách 3. Giải hệ phương trình \(\left\{ \begin{array}{l}2x + 3y = 3\\ - 4x - 5y = 9.\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với \(2,\) ta được hệ phương trình mới \(\left\{ \begin{array}{l}4x + 6y = 6\\ - 4x - 5y = 9.\end{array} \right.\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(y = 15.\)
Thay \(y = 15\) vào phương trình \(2x + 3y = 3,\) ta được:
\(2x + 3 \cdot 15 = 3,\) hay \(2x + 45 = 3,\) suy ra \(2x = - 42,\) nên \(x = - 21.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất là \(\left( { - 21;\,\,15} \right).\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A

Tam giác \[ABC\] vuông tại \[A\], ta có: \[\sin \widehat {ABC} = \frac{{AC}}{{BC}}\].
Vậy ta chọn phương án A.Lời giải
Đáp án đúng là: D
Điều kiện xác định của phương trình \(\frac{1}{{x\left( {{x^2} + 4} \right)}} = \frac{{x + 1}}{x} - \frac{1}{{x - 2}}\) là \[x \ne 0\] và \[x - 2 \ne 0,\] hay \[x \ne 0\] và \[x \ne 2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.