1. Giải các phương trình sau:
a) \(\left( {1 - 2x} \right)\left( {x + 5} \right) = 0.\) b) \(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{2 + x}} = \frac{{{x^2} + 16}}{{{x^2} - 4}}.\)
2. Giải các bất phương trình sau:
a) \(3x - 8 > 4x - 12.\) b) \(\frac{{2 - x}}{4} < 5\). c) \[{\left( {x - 4} \right)^2} - \left( {x + 5} \right)\left( {x - 5} \right) \ge - 8x + 41.\]
1. Giải các phương trình sau:
a) \(\left( {1 - 2x} \right)\left( {x + 5} \right) = 0.\) b) \(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{2 + x}} = \frac{{{x^2} + 16}}{{{x^2} - 4}}.\)
2. Giải các bất phương trình sau:
a) \(3x - 8 > 4x - 12.\) b) \(\frac{{2 - x}}{4} < 5\). c) \[{\left( {x - 4} \right)^2} - \left( {x + 5} \right)\left( {x - 5} \right) \ge - 8x + 41.\]
Quảng cáo
Trả lời:

1. a) \(\left( {1 - 2x} \right)\left( {x + 5} \right) = 0\) \(1 - 2x = 0\) hoặc \(x + 5 = 0\) \(2x = 1\) hoặc \(x = - 5\) \(x = \frac{1}{2}\) hoặc \(x = - 5\) Vậy phương trình đã cho có nghiệm là \(x = \frac{1}{2};\,\,x = - 5.\) |
1. b) Điều kiện xác định: \(x \ne 2,\,\,\,x \ne - 2.\) \(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{2 + x}} = \frac{{{x^2} + 16}}{{{x^2} - 4}}\) \(\frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{x^2} + 16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\) \({\left( {x + 2} \right)^2} - {\left( {x - 2} \right)^2} = {x^2} + 16\) \({x^2} + 4x + 4 - \left( {{x^2} - 4x + 4} \right) = {x^2} + 16\) \({x^2} + 4x + 4 - {x^2} + 4x - 4 = {x^2} + 16\) \({x^2} - 8x + 16 = 0\) \({\left( {x - 4} \right)^2} = 0\) \(x - 4 = 0\) \(x = 4\) (thỏa mãn). Vậy nghiệm của phương trình đã cho là \(x = 4\). |
2. a) \(3x - 8 > 4x - 12\) \(3x - 4x > - 12 + 8\) \( - x > - 4\) \(x < 4\). Vậy nghiệm của bất phương trình đã cho là \(x < 4.\) 2. c) \[{\left( {x - 4} \right)^2} - \left( {x + 5} \right)\left( {x - 5} \right) \ge - 8x + 41\] \[{x^2} - 8x + 16 - {x^2} + 25 \ge - 8x + 41\] \[ - 8x + 8x \ge 41 - 16 - 25\] \[0x \ge 0\]. Vậy nghiệm của bất phương trình đã cho là \[x \in \mathbb{R}.\] |
2. b) \(\frac{{2 - x}}{4} < 5\) \(\frac{{2 - x}}{4} \cdot 4 < 5 \cdot 4\) \(2 - x < 20\) \( - x < 18\) \(x > - 18\). Vậy nghiệm của bất phương trình đã cho là \(x > - 18\). |
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A

Tam giác \[ABC\] vuông tại \[A\], ta có: \[\sin \widehat {ABC} = \frac{{AC}}{{BC}}\].
Vậy ta chọn phương án A.Câu 2
Lời giải
Đáp án đúng là: B
Với \(\alpha + \beta = 90^o ,\) ta có: \(\sin \alpha = \cos \beta ;\,\,\cos \alpha = \sin \beta ;\,\,\tan \alpha = \cot \beta ;\,\,\cot \alpha = \tan \beta .\)
Vậy ta chọn phương án B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.