Câu hỏi:
02/10/2024 3641. Giải các phương trình sau:
a) \(\left( {1 - 2x} \right)\left( {x + 5} \right) = 0.\) b) \(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{2 + x}} = \frac{{{x^2} + 16}}{{{x^2} - 4}}.\)
2. Giải các bất phương trình sau:
a) \(3x - 8 > 4x - 12.\) b) \(\frac{{2 - x}}{4} < 5\). c) \[{\left( {x - 4} \right)^2} - \left( {x + 5} \right)\left( {x - 5} \right) \ge - 8x + 41.\]
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
1. a) \(\left( {1 - 2x} \right)\left( {x + 5} \right) = 0\) \(1 - 2x = 0\) hoặc \(x + 5 = 0\) \(2x = 1\) hoặc \(x = - 5\) \(x = \frac{1}{2}\) hoặc \(x = - 5\) Vậy phương trình đã cho có nghiệm là \(x = \frac{1}{2};\,\,x = - 5.\) |
1. b) Điều kiện xác định: \(x \ne 2,\,\,\,x \ne - 2.\) \(\frac{{x + 2}}{{x - 2}} - \frac{{x - 2}}{{2 + x}} = \frac{{{x^2} + 16}}{{{x^2} - 4}}\) \(\frac{{{{\left( {x + 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{{x^2} + 16}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\) \({\left( {x + 2} \right)^2} - {\left( {x - 2} \right)^2} = {x^2} + 16\) \({x^2} + 4x + 4 - \left( {{x^2} - 4x + 4} \right) = {x^2} + 16\) \({x^2} + 4x + 4 - {x^2} + 4x - 4 = {x^2} + 16\) \({x^2} - 8x + 16 = 0\) \({\left( {x - 4} \right)^2} = 0\) \(x - 4 = 0\) \(x = 4\) (thỏa mãn). Vậy nghiệm của phương trình đã cho là \(x = 4\). |
2. a) \(3x - 8 > 4x - 12\) \(3x - 4x > - 12 + 8\) \( - x > - 4\) \(x < 4\). Vậy nghiệm của bất phương trình đã cho là \(x < 4.\) 2. c) \[{\left( {x - 4} \right)^2} - \left( {x + 5} \right)\left( {x - 5} \right) \ge - 8x + 41\] \[{x^2} - 8x + 16 - {x^2} + 25 \ge - 8x + 41\] \[ - 8x + 8x \ge 41 - 16 - 25\] \[0x \ge 0\]. Vậy nghiệm của bất phương trình đã cho là \[x \in \mathbb{R}.\] |
2. b) \(\frac{{2 - x}}{4} < 5\) \(\frac{{2 - x}}{4} \cdot 4 < 5 \cdot 4\) \(2 - x < 20\) \( - x < 18\) \(x > - 18\). Vậy nghiệm của bất phương trình đã cho là \(x > - 18\). |
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Giải bất phương trình ẩn \[x\] sau: \[\frac{{x - ab}}{{a + b}} + \frac{{x - bc}}{{b + c}} + \frac{{x - ac}}{{a + c}} > a + b + c\] với \[a,\,\,b,\,\,c > 0\].
Câu 4:
Câu 5:
a) Tính chiều cao của đài quan sát (làm tròn kết quả đến hàng đơn vị của mét), biết độ cao từ tầm mắt của người đó đến đỉnh đài quan sát là \[3\] m.
b) Tính số đo góc \[\alpha \] (làm tròn kết quả đến hàng đơn vị của phút).
c) Tính khoảng cách từ mắt người quan sát đến vị trí \[D\] (làm tròn kết quả đến hàng đơn vị của mét).
Câu 6:
Câu 7:
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận