Câu hỏi:
04/10/2024 12,292
Cho hình hộp
.

a) Các vectơ bằng với vectơ
là
.
b) Các vectơ đối của vectơ
là
.
c)
.
d)
.
Cho hình hộp .
a) Các vectơ bằng với vectơ là
.
b) Các vectơ đối của vectơ là
.
c) .
d) .
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Chân Trời Sáng Tạo có đáp án !!
Quảng cáo
Trả lời:
a) Đ, b) S, c) S, d) Đ.
Hướng dẫn giải
– Vì \(ABCD.A'B'C'D'\) là hình hộp nên các mặt của hình hộp này là hình bình hành.
Do đó, \(\overrightarrow {AD} = \overrightarrow {BC} = \overrightarrow {B'C'} = \overrightarrow {A'D'} \). Vậy ý a) đúng.
– Ta có \(\overrightarrow {DB} = - \overrightarrow {BD} \) và \(\overrightarrow {DB} = \overrightarrow {D'B'} = - \overrightarrow {B'D'} \).
Vậy các vectơ đối của vectơ \(\overrightarrow {DB} \) là \[\overrightarrow {BD} ,\,\,\overrightarrow {B'D'} \]. Do đó ý b) sai.
– Vì \(\overrightarrow {AB} = \overrightarrow {DC} = \overrightarrow {D'C'} \) nên \(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {D'C'} + \overrightarrow {D'C'} = 2\overrightarrow {D'C'} \).
Vậy ý c) sai.
– Ta có \(\overrightarrow {BB'} = \overrightarrow {AA'} ,\,\,\overrightarrow {CA} = \overrightarrow {C'A'} \). Suy ra \(\overrightarrow {BB'} - \overrightarrow {CA} = \overrightarrow {AA'} - \overrightarrow {C'A'} = \overrightarrow {AA'} + \overrightarrow {A'C'} = \overrightarrow {AC'} \).
Vậy ý d) đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo đề bài, ta có hình vẽ sau:

Hợp lực tác động vào ba vật là \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} \).
Ta có \(\widehat {AOB} = \left( {\overrightarrow {OA} ,\,\overrightarrow {OB} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} } \right) = 110^\circ \). Suy ra \(\widehat {OAD} = 70^\circ \).
Áp dụng định lý côsin trong tam giác \(OAD\), ta có:
\(O{D^2} = O{A^2} + A{D^2} - 2OA \cdot AD \cdot \cos \widehat {OAD} = {9^2} + {4^2} - 2 \cdot 9 \cdot 4 \cdot \cos 70^\circ = 97 - 72\cos 70^\circ \).
Vì \(OC \bot \left( {OBDA} \right)\) nên \(OC \bot OD\). Suy ra \(ODEC\) là hình chữ nhật.
Do đó, tam giác \(OCE\) vuông tại \(C\) nên
\(O{E^2} = O{C^2} + E{C^2} = {7^2} + 97 - 72\cos 70^\circ = 146 - 72\cos 70^\circ \).
Suy ra \(OE = \sqrt {146 - 72\cos 70^\circ } \approx 11\).
Vậy độ lớn của hợp lực của ba lực đã cho bằng khoảng 11 N.
Đáp số: \(11\).
Lời giải

Ta mô hình hóa bài toán đã cho như hình trên với \(H,\,K\) lần lượt là hình chiếu của \(A\) lên bờ dọc \(BD\) và bờ ngang \(CD\). Khi đó, theo bài ra có \(AH = 12\,\,{\rm{m}},\,\,AK = 5\,\,{\rm{m}}\).
Suy ra \(DK = AH = 12\,\,{\rm{m}},\,\,DH = AK = 5\,\,{\rm{m}}\).
Đặt \(BH = x\,\,\,\left( {{\rm{m}},\,x > 0} \right)\).
Ta có \(AH\,{\rm{//}}\,BC,\,\,AK\,{\rm{//}}\,DH\) nên \(\frac{{BH}}{{HD}} = \frac{{BA}}{{AC}} = \frac{{DK}}{{KC}}\).
Suy ra \(KC = \frac{{HD \cdot DK}}{{BH}} = \frac{{5 \cdot 12}}{x} = \frac{{60}}{x}\) (m).
Diện tích khu nuôi cá riêng là:
\(S = \frac{1}{2}BD \cdot DC = \frac{1}{2}\left( {x + 5} \right)\left( {\frac{{60}}{x} + 12} \right) = 6x + \frac{{150}}{x} + 60\) (m2).
Xét hàm số \(S\left( x \right) = 6x + \frac{{150}}{x} + 60\) với \(x \in \left( {0; + \infty } \right)\).
Ta có \(S'\left( x \right) = 6 - \frac{{150}}{{{x^2}}} = \frac{{6{x^2} - 150}}{{{x^2}}}\). Trên khoảng \(\left( {0; + \infty } \right)\), \(S'\left( x \right) = 0 \Leftrightarrow x = 5\).
Bảng biến thiên của hàm số \(S\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\) như sau:

Từ bảng biến thiên, ta có \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} S\left( x \right) = 120\) tại \(x = 5\).
Vậy diện tích nhỏ nhất có thể giăng dưới là \(120\) m2.
Ngoài ra, ta có thể dùng bất đẳng thức:
\[S = 6x + \frac{{150}}{x} + 60 \ge 2\sqrt {6x \cdot \frac{{150}}{x}} + 60 = 120\].
Dấu “=” xảy ra khi và chỉ khi \(6x = \frac{{150}}{x} \Leftrightarrow x = 5 \in \left( {0;\, + \infty } \right)\).
Đáp số: \(120\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.