Câu hỏi:

04/10/2024 1,988 Lưu

Cho hàm số có đồ thị như hình vẽ.

Trong các số có bao nhiêu số có giá trị dương?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Do đồ thị có tiệm cận đứng là \(x = 2\) nên \(d < 0.\)

Giao điểm của đồ thị và trục tung có tung độ \(\frac{c}{d} < 0 \Rightarrow c > 0.\)

Hệ số góc của tiệm cận xiên là \(a.\) Mặt khác, từ hình vẽ hệ số góc của tiệm cận xiên là dương nên \(a > 0.\)

Lại có \(y' = \frac{{a{x^2} + 2adx + bd - c}}{{{{\left( {x + d} \right)}^2}}}\) và hai điểm cực trị của hàm số có giá trị dương.

Suy ra \({x_1}{x_2} = \frac{{bd - c}}{a} > 0 \Rightarrow bd - c > 0 \Rightarrow bd > c \Rightarrow b < 0\).

Vậy có 2 số có giá trị dương trong các số \(a,b,c,d\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ,            b) S,            c) S,             d) Đ.

Hướng dẫn giải

 Cho hình hộp ABCD.A'B'C'D' a) Các vecto bằng với vecto AD (ảnh 1)

– Vì \(ABCD.A'B'C'D'\) là hình hộp nên các mặt của hình hộp này là hình bình hành.

Do đó, \(\overrightarrow {AD} = \overrightarrow {BC} = \overrightarrow {B'C'} = \overrightarrow {A'D'} \). Vậy ý a) đúng.

– Ta có \(\overrightarrow {DB} = - \overrightarrow {BD} \)\(\overrightarrow {DB} = \overrightarrow {D'B'} = - \overrightarrow {B'D'} \).

Vậy các vectơ đối của vectơ \(\overrightarrow {DB} \)\[\overrightarrow {BD} ,\,\,\overrightarrow {B'D'} \]. Do đó ý b) sai.

– Vì \(\overrightarrow {AB} = \overrightarrow {DC} = \overrightarrow {D'C'} \) nên \(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {D'C'} + \overrightarrow {D'C'} = 2\overrightarrow {D'C'} \).

Vậy ý c) sai.

– Ta có \(\overrightarrow {BB'} = \overrightarrow {AA'} ,\,\,\overrightarrow {CA} = \overrightarrow {C'A'} \). Suy ra \(\overrightarrow {BB'} - \overrightarrow {CA} = \overrightarrow {AA'} - \overrightarrow {C'A'} = \overrightarrow {AA'} + \overrightarrow {A'C'} = \overrightarrow {AC'} \).

Vậy ý d) đúng.

Lời giải

Theo đề bài, ta có hình vẽ sau:

Có ba lực cùng tác động vào một cái bàn như  (ảnh 1)

Hợp lực tác động vào ba vật là \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} \).

Ta có \(\widehat {AOB} = \left( {\overrightarrow {OA} ,\,\overrightarrow {OB} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} } \right) = 110^\circ \). Suy ra \(\widehat {OAD} = 70^\circ \).

Áp dụng định lý côsin trong tam giác \(OAD\), ta có:

\(O{D^2} = O{A^2} + A{D^2} - 2OA \cdot AD \cdot \cos \widehat {OAD} = {9^2} + {4^2} - 2 \cdot 9 \cdot 4 \cdot \cos 70^\circ = 97 - 72\cos 70^\circ \).

 \(OC \bot \left( {OBDA} \right)\) nên \(OC \bot OD\). Suy ra \(ODEC\) là hình chữ nhật.

Do đó, tam giác \(OCE\) vuông tại \(C\) nên

\(O{E^2} = O{C^2} + E{C^2} = {7^2} + 97 - 72\cos 70^\circ = 146 - 72\cos 70^\circ \).

Suy ra \(OE = \sqrt {146 - 72\cos 70^\circ } \approx 11\).

Vậy độ lớn của hợp lực của ba lực đã cho bằng khoảng 11 N.

Đáp số: \(11\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP