Câu hỏi:

19/08/2025 1,964 Lưu

Cho tứ diện đôi một vuông góc và . Gọi là trung điểm của .

a) .

b) .

c) .

d) .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ,            b) S,            c) S,             d) Đ.

Hướng dẫn giải

– Theo quy tắc ba điểm, ta có:

\(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CD} \)\( = \overrightarrow {AD} + \left( {\overrightarrow {CD} + \overrightarrow {DB} } \right) = \overrightarrow {AD} + \overrightarrow {CB} \).

Vậy ý a) đúng.

– Do \(AB,\,AC,\,AD\) đôi một vuông góc nên ta có:

\(\overrightarrow {AB} \cdot \overrightarrow {AD} = \overrightarrow {AC} \cdot \overrightarrow {AD} = \overrightarrow {AC} \cdot \overrightarrow {AB} = 0\).

Vậy ý) b sai.

– Vì \(AB = 1\) nên \({\overrightarrow {AB} ^2} = 1\).

\(M\) là trung điểm của \(BC\) nên ta có:

\(\overrightarrow {AM} \cdot \overrightarrow {BD} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) \cdot \left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\)

\( = \frac{1}{2}\left( {\overrightarrow {AB} \cdot \overrightarrow {AD} - {{\overrightarrow {AB} }^2} + \overrightarrow {AC} \cdot \overrightarrow {AD} - \overrightarrow {AC} \cdot \overrightarrow {AB} } \right)\)

\( = \frac{1}{2}\left( {0 - 1 + 0 - 0} \right) = - \frac{1}{2}\).

Vậy ý c) sai.

– Ta tính được \(AM = \frac{{\sqrt 2 }}{2},\,\,BD = \sqrt 2 \), suy ra

\(\cos \left( {\overrightarrow {AM} ,\,\overrightarrow {BD} } \right) = \frac{{\overrightarrow {AM} \cdot \overrightarrow {BD} }}{{\left| {\overrightarrow {AM} } \right| \cdot \left| {\overrightarrow {BD} } \right|}} = \frac{{ - \frac{1}{2}}}{{\frac{{\sqrt 2 }}{2} \cdot \sqrt 2 }} = - \frac{1}{2}\).

Vậy \(\left( {\overrightarrow {AM} ,\,\,\overrightarrow {BD} } \right) = 120^\circ \). Do đó, ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ,            b) S,            c) S,             d) Đ.

Hướng dẫn giải

 Cho hình hộp ABCD.A'B'C'D' a) Các vecto bằng với vecto AD (ảnh 1)

– Vì \(ABCD.A'B'C'D'\) là hình hộp nên các mặt của hình hộp này là hình bình hành.

Do đó, \(\overrightarrow {AD} = \overrightarrow {BC} = \overrightarrow {B'C'} = \overrightarrow {A'D'} \). Vậy ý a) đúng.

– Ta có \(\overrightarrow {DB} = - \overrightarrow {BD} \)\(\overrightarrow {DB} = \overrightarrow {D'B'} = - \overrightarrow {B'D'} \).

Vậy các vectơ đối của vectơ \(\overrightarrow {DB} \)\[\overrightarrow {BD} ,\,\,\overrightarrow {B'D'} \]. Do đó ý b) sai.

– Vì \(\overrightarrow {AB} = \overrightarrow {DC} = \overrightarrow {D'C'} \) nên \(\overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {D'C'} + \overrightarrow {D'C'} = 2\overrightarrow {D'C'} \).

Vậy ý c) sai.

– Ta có \(\overrightarrow {BB'} = \overrightarrow {AA'} ,\,\,\overrightarrow {CA} = \overrightarrow {C'A'} \). Suy ra \(\overrightarrow {BB'} - \overrightarrow {CA} = \overrightarrow {AA'} - \overrightarrow {C'A'} = \overrightarrow {AA'} + \overrightarrow {A'C'} = \overrightarrow {AC'} \).

Vậy ý d) đúng.

Lời giải

Theo đề bài, ta có hình vẽ sau:

Có ba lực cùng tác động vào một cái bàn như  (ảnh 1)

Hợp lực tác động vào ba vật là \(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} \).

Ta có \(\widehat {AOB} = \left( {\overrightarrow {OA} ,\,\overrightarrow {OB} } \right) = \left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} } \right) = 110^\circ \). Suy ra \(\widehat {OAD} = 70^\circ \).

Áp dụng định lý côsin trong tam giác \(OAD\), ta có:

\(O{D^2} = O{A^2} + A{D^2} - 2OA \cdot AD \cdot \cos \widehat {OAD} = {9^2} + {4^2} - 2 \cdot 9 \cdot 4 \cdot \cos 70^\circ = 97 - 72\cos 70^\circ \).

 \(OC \bot \left( {OBDA} \right)\) nên \(OC \bot OD\). Suy ra \(ODEC\) là hình chữ nhật.

Do đó, tam giác \(OCE\) vuông tại \(C\) nên

\(O{E^2} = O{C^2} + E{C^2} = {7^2} + 97 - 72\cos 70^\circ = 146 - 72\cos 70^\circ \).

Suy ra \(OE = \sqrt {146 - 72\cos 70^\circ } \approx 11\).

Vậy độ lớn của hợp lực của ba lực đã cho bằng khoảng 11 N.

Đáp số: \(11\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP