Câu hỏi:

19/08/2025 266 Lưu

Cho hàm số \(y = \frac{{x - 3}}{{x + 1}}\).

a) Hàm số đã cho đồng biến trên \[\mathbb{R}\backslash \left\{ { - 1} \right\}\].

b) Hàm số đã cho đạt cực đại tại \(x = 4\).

c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x = - 1\), tiệm cận ngang là đường thẳng \(y = 1\).

d) \(2\,023\) giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2\,024;2\,024} \right]\) để đường thẳng \(y = x + 2m\) cắt đồ thị hàm số đã cho tại hai điểm nằm về hai phía của trục tung.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S,            b) S,            c) Đ,            d) Đ.

Hướng dẫn giải

Xét hàm số \(y = \frac{{x - 3}}{{x + 1}}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).

– Ta có \(y' = \frac{4}{{{{\left( {x + 1} \right)}^2}}}\); \(y' > 0\) với mọi \(x \ne - 1\).

– Hàm số đã cho đồng biến trên từng khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( { - 1; + \infty } \right)\). Do đó, ý a) sai.

– Hàm số đã cho không có cực trị. Do đó, ý b) sai.

– Tiệm cận:

+) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x - 3}}{{x + 1}} = 1;\,\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 3}}{{x + 1}} = 1\). Do đó, tiệm cận ngang của đồ thị hàm số đã cho là đường thẳng \(y = 1\).

+) \(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{x - 3}}{{x + 1}} = - \infty ;\,\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{x - 3}}{{x + 1}} = + \infty \). Do đó, tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x = - 1\).

Vậy ý c) đúng.

– Phương trình hoành độ giao điểm của đường thẳng \(y = x + 2m\,\,\left( d \right)\) và đồ thị hàm số \(y = \frac{{x - 3}}{{x + 1}}\,\,\left( C \right)\) là: \(\frac{{x - 3}}{{x + 1}} = x + 2m\)\( \Leftrightarrow \left( {x + 1} \right)\left( {x + 2m} \right) = x - 3\)\( \Leftrightarrow {x^2} + 2mx + 2m + 3 = 0\).

Xét hàm số \(g\left( x \right) = {x^2} + 2mx + 2m + 3\).

\(\left( d \right)\) cắt \(\left( C \right)\) tại hai điểm nằm về hai phía của trục tung khi phương trình \(g\left( x \right) = 0\) có hai nghiệm \({x_1};\,{x_2}\) khác \( - 1\)\({x_1}{x_2} < 0\). Điều này xảy ra khi và chỉ khi

\[\left\{ {\begin{array}{*{20}{c}}\begin{array}{l}{\Delta _g} > 0\\g\left( { - 1} \right) \ne 0\end{array}\\{\frac{c}{a} < 0\,\,\,\,\,\,\,\,\,\,}\end{array}} \right.\]\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m - 3 > 0\\1 - 2m + 2m + 3 \ne 0\\2m + 3 < 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m < - 1\\m > 3\end{array} \right.\\m < - \frac{3}{2}\end{array} \right.\)\( \Leftrightarrow m < - \frac{3}{2}\).

\(m \in \mathbb{Z},\,\,m \in \left[ { - 2\,024;\,2\,024} \right]\) nên \(m \in \left\{ { - 2\,024;\, - 2\,023;\,...; - 2} \right\}\).

Vậy có \(2\,023\) giá trị của \(m\) thỏa mãn.

Do đó, ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ,           b) S,            c) S,            d) S.

Hướng dẫn giải

– Theo quy tắc ba điểm, ta có: \(\overrightarrow {SA} + \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {SB} + \overrightarrow {BC} = \overrightarrow {SC} \). Do đó, ý a) đúng.

– Ta có \(\left| {\overrightarrow {SA} } \right| = SA = 1;\,\,\left| {\overrightarrow {AB} } \right| = AB = 1;\,\,\left| {\overrightarrow {BC} } \right| = BC = \sqrt 2 \). Do đó, ý b) sai.

– Từ giả thiết, ta thấy tam giác \(ABC\) vuông tại \(A\) và tam giác \(SAB\) đều.

Do đó, \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 0\)\(\left( {\overrightarrow {SA} ,\,\overrightarrow {AB} } \right) = 180^\circ - \widehat {SAB} = 120^\circ \).

Ta có: \[\overrightarrow {SC} \cdot \overrightarrow {AB} = \left( {\overrightarrow {SA} + \overrightarrow {AC} } \right) \cdot \overrightarrow {AB} = \overrightarrow {SA} \cdot \overrightarrow {AB} + \overrightarrow {AC} \cdot \overrightarrow {AB} \]

\( = \overrightarrow {SA} \cdot \overrightarrow {AB} = \left| {\overrightarrow {SA} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos 120^\circ = - \frac{1}{2}\).

Do đó, ý c) sai.

– Ta có: \(\cos \left( {\overrightarrow {SC} ,\,\overrightarrow {AB} } \right) = \frac{{\overrightarrow {SC} \cdot \,\overrightarrow {AB} }}{{\left| {\overrightarrow {SC} } \right| \cdot \,\left| {\overrightarrow {AB} } \right|}} = \frac{{ - \frac{1}{2}}}{{1 \cdot 1}} = - \frac{1}{2}\). Vậy ý d) sai.

Lời giải

Gọi là tâm của đáy .

là hình chóp tứ giác đều nên , là trung điểm của .

Ta có: , suy ra .  

Hợp lực của bốn sợi xích là: 

.

Để đèn chùm đứng yên thì hợp lực của các sợi xích phải cân bằng với trọng lực , điều đó có nghĩa là , suy ra , hay .

Độ lớn của trọng lực tác động lên đèn chùm là: (N).

Do đó, .

Ta có: .

Vậy độ lớn của lực căng cho mỗi sợi xích bằng khoảng 8,5 N.

Đáp số: .

Câu 5

A. \(\left( {3; - 4;2} \right)\).
B. \(\left( { - 3; - 4;2} \right)\).
C. \(\left( { - 4;3;2} \right)\).
D. \(\left( {2; - 4;3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) \(\left( {1; + \infty } \right)\).                          

B. Hàm số đã cho nghịch biến trên khoảng \(\left( { - 1;1} \right)\).  

C. Hàm số đã cho đồng biến trên khoảng \[\left( { - 1;\,1} \right)\].   

D. Hàm số đã cho nghịch biến trên khoảng \[\left( { - 3;\,1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP