Câu hỏi:

19/08/2025 260 Lưu

Cho tứ diện \(ABCD\). Gọi \(E,\,F\) là các điểm lần lượt thuộc các cạnh \(AB,\,CD\) sao cho \(AE = \frac{1}{3}AB,\,CF = \frac{1}{3}CD\). Khi biểu diễn vectơ \(\overrightarrow {EF} \) theo ba vectơ \(\overrightarrow {AB} ,\,\overrightarrow {AD} ,\,\overrightarrow {BC} \) ta được: \(\overrightarrow {EF} = \frac{a}{b}\overrightarrow {AB} + \frac{c}{d}\overrightarrow {AD} + \frac{r}{s}\overrightarrow {BC} \) (với \(\frac{a}{b},\,\frac{c}{d},\,\frac{r}{s}\) là các phân số tối giản và \(a,b,c,d,r,s \in \mathbb{Z}\)). Ta tính được giá trị của biểu thức \(M = \frac{a}{b} + \frac{c}{d} + \frac{r}{s}\) bằng \(\frac{x}{y}\) (với \(\frac{x}{y}\) là phân số tối giản và \(x,\,y \in \mathbb{Z}\)). Khi đó, giá trị của biểu thức \(P = x + y\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tứ diện ABCD. Gọi E, F là các điểm lần lượt (ảnh 1)

Ta có: \(\overrightarrow {EF} = \overrightarrow {EA} + \overrightarrow {AD} + \overrightarrow {DF} \)\( = - \frac{1}{3}\overrightarrow {AB} + \overrightarrow {AD} + \frac{2}{3}\overrightarrow {DC} \)

                   \( = - \frac{1}{3}\overrightarrow {AB} + \overrightarrow {AD} + \frac{2}{3}\left( {\overrightarrow {DA} + \overrightarrow {AB} + \overrightarrow {BC} } \right)\)

                   \( = \left( { - \frac{1}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AB} } \right) + \left( {\overrightarrow {AD} - \frac{2}{3}\overrightarrow {AD} } \right) + \frac{2}{3}\overrightarrow {BC} \)

                   \( = \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BC} \).

Khi đó, \(\frac{a}{b} = \frac{1}{3};\,\,\frac{c}{d} = \frac{1}{3};\,\,\frac{r}{s} = \frac{2}{3}\).

Do đó, \(M = \frac{a}{b} + \frac{c}{d} + \frac{r}{s}\)\( = \frac{1}{3} + \frac{1}{3} + \frac{2}{3} = \frac{4}{3}\). Suy ra \(x = 4;y = 3\).

Vậy \(P = x + y = 4 + 3 = 7\).

Đáp số: \(7\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ,           b) S,            c) S,            d) S.

Hướng dẫn giải

– Theo quy tắc ba điểm, ta có: \(\overrightarrow {SA} + \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {SB} + \overrightarrow {BC} = \overrightarrow {SC} \). Do đó, ý a) đúng.

– Ta có \(\left| {\overrightarrow {SA} } \right| = SA = 1;\,\,\left| {\overrightarrow {AB} } \right| = AB = 1;\,\,\left| {\overrightarrow {BC} } \right| = BC = \sqrt 2 \). Do đó, ý b) sai.

– Từ giả thiết, ta thấy tam giác \(ABC\) vuông tại \(A\) và tam giác \(SAB\) đều.

Do đó, \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 0\)\(\left( {\overrightarrow {SA} ,\,\overrightarrow {AB} } \right) = 180^\circ - \widehat {SAB} = 120^\circ \).

Ta có: \[\overrightarrow {SC} \cdot \overrightarrow {AB} = \left( {\overrightarrow {SA} + \overrightarrow {AC} } \right) \cdot \overrightarrow {AB} = \overrightarrow {SA} \cdot \overrightarrow {AB} + \overrightarrow {AC} \cdot \overrightarrow {AB} \]

\( = \overrightarrow {SA} \cdot \overrightarrow {AB} = \left| {\overrightarrow {SA} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos 120^\circ = - \frac{1}{2}\).

Do đó, ý c) sai.

– Ta có: \(\cos \left( {\overrightarrow {SC} ,\,\overrightarrow {AB} } \right) = \frac{{\overrightarrow {SC} \cdot \,\overrightarrow {AB} }}{{\left| {\overrightarrow {SC} } \right| \cdot \,\left| {\overrightarrow {AB} } \right|}} = \frac{{ - \frac{1}{2}}}{{1 \cdot 1}} = - \frac{1}{2}\). Vậy ý d) sai.

Lời giải

Gọi là tâm của đáy .

là hình chóp tứ giác đều nên , là trung điểm của .

Ta có: , suy ra .  

Hợp lực của bốn sợi xích là: 

.

Để đèn chùm đứng yên thì hợp lực của các sợi xích phải cân bằng với trọng lực , điều đó có nghĩa là , suy ra , hay .

Độ lớn của trọng lực tác động lên đèn chùm là: (N).

Do đó, .

Ta có: .

Vậy độ lớn của lực căng cho mỗi sợi xích bằng khoảng 8,5 N.

Đáp số: .

Câu 5

A. \(\left( {3; - 4;2} \right)\).
B. \(\left( { - 3; - 4;2} \right)\).
C. \(\left( { - 4;3;2} \right)\).
D. \(\left( {2; - 4;3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) \(\left( {1; + \infty } \right)\).                          

B. Hàm số đã cho nghịch biến trên khoảng \(\left( { - 1;1} \right)\).  

C. Hàm số đã cho đồng biến trên khoảng \[\left( { - 1;\,1} \right)\].   

D. Hàm số đã cho nghịch biến trên khoảng \[\left( { - 3;\,1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP