Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Chân Trời Sáng Tạo có đáp án !!
Quảng cáo
Trả lời:
Với \(m = - 4\), ta có: \(\left( C \right):y = \frac{{{x^2} - 3x - 4}}{{x - 1}}\).
1. Tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}.\)
2. Sự biến thiên
Giới hạn tại vô cực, giới hạn vô cực và các đường tiệm cận:
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 3x - 4}}{{x - 1}} = + \infty .\)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 3x - 4}}{{x - 1}} = - \infty .\)
Do đó, đồ thị hàm số không có tiệm cận ngang.
\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 3x - 4}}{{x - 1}} = - \infty ,\)\(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 3x - 4}}{{x - 1}} = + \infty \), do đó đồ thị hàm số nhận đường thẳng \(x = 1\) làm tiệm cận đứng.
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 3x - 4}}{{x\left( {x - 1} \right)}} = 1\), \(\mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{{x^2} - 3x - 4}}{{x - 1}} - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2x - 4}}{{x - 1}} = - 2\).
Do đó, đồ thị hàm số nhận đường thẳng \(y = x - 2\) làm tiệm cận xiên.
Ta có: \(y' = \frac{{{x^2} - 2x + 7}}{{{{\left( {x - 1} \right)}^2}}} > 0,\forall x \in D.\)
Từ đây ta có bảng biến thiên:

Hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right).\)
Hàm số không có cực trị.
3. Đồ thị
Giao điểm của đồ thị với trục tung: \(\left( {0;4} \right).\)
Giao điểm của đồ thị với trục hoành: \(\left( {4;0} \right),\left( { - 1;0} \right).\)
Đồ thị đi qua các điểm \(\left( { - 2; - 2} \right);\left( {2; - 6} \right);\left( {3; - 2} \right);\left( {5;\frac{3}{2}} \right)\).
Đồ thị nhận đường thẳng \(x = 1\) làm tiệm cận đứng và đường thẳng \(y = x - 2\) làm tiệm cận xiên.
Ta có đồ thị hàm số:

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có: \(G\left( x \right) = 0,025{x^2}\left( {30 - x} \right) = 0,75{x^2} - 0,025{x^3}\), \(\left( {x > 0} \right)\).
\(G'\left( x \right) = 1,5x - 0,075{x^2}\)
\(G'\left( x \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 20\end{array} \right.\).
Ta có bảng biến thiên như sau:

Liều lượng thuốc cần tiêm cho bệnh nhân nằm trong khoảng \(\left( {0;20} \right)\) thì huyết áp bệnh nhân tăng.
Lời giải
Đáp án đúng là: A
Từ bảng biến thiên, ta thấy đường thẳng (trục hoành) cắt đồ thị hàm số đã cho tại 4 điểm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.