Câu hỏi:
09/10/2024 166
Cho hình chóp
có đáy
là hình bình hành tâm
.
là điểm thỏa mãn
. Khi đó:

a)
.
b)
.
c)
.
d)
.
Cho hình chóp có đáy
là hình bình hành tâm
.
là điểm thỏa mãn
. Khi đó:
a) .
b) .
c) .
d) .
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Kết Nối Tri Thức có đáp án !!
Quảng cáo
Trả lời:
a) S, b) Đ, c) Đ, d) S.
Hướng dẫn giải
– Ta có: nên ý a) sai.
– Vì là tâm hình bình hành
nên
là trung điểm của
và
.
Khi đó, , suy ra
.
Vậy ý b) đúng.
– Ta có , do đó
nên ý c) đúng.
– Ta có
.
Vậy ý d) sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) S, b) Đ, c) S, d) Đ.
Hướng dẫn giải
– Quan sát hình vẽ, ta thấy:
Hàm số đã cho có tập xác định là .
Trên các khoảng và
, đồ thị hàm số đi lên từ trái qua phải nên hàm số đã cho đồng biến trên mỗi khoảng này.
Trên các khoảng và
, đồ thị hàm số đi xuống từ trái qua phải nên hàm số đã cho nghịch biến trên mỗi khoảng này.
Vậy ý) a sai.
– Hàm số đã cho đạt cực đại tại ; đạt cực tiểu tại
, do đó ý b) đúng.
– Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng , do đó ý c) sai.
– Vì là tiệm cận đứng nên
. Khi đó,
.
Ta có ;
(*).
là một nghiệm của phương trình (*), do đó
.
Các điểm ,
thuộc đồ thị hàm số đã cho nên tọa độ các điểm này thỏa mãn hàm số
.
Khi đó, ta có hệ phương trình sau: .
Vậy công thức xác định hàm số đã cho là . Do đó, ý) d đúng.
Lời giải
Đáp án đúng là: D
Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.
Giao điểm này có tọa độ là .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.