Câu hỏi:
09/10/2024 255Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Xét hàm số \(y = \frac{{{x^2} + x + 1}}{{x - 1}}\):
Tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}.\)
Ta có: \(y = \frac{{{x^2} + x + 1}}{{x - 1}} = x + 2 + \frac{3}{{x - 1}}\)
\(y' = \frac{{{x^2} - 2x - 2}}{{{{\left( {x - 1} \right)}^2}}}\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 - \sqrt 3 \\x = 1 + \sqrt 3 \end{array} \right.\).
Đồ thị hàm số có tiệm cận đứng \(x = 1\) và tiệm cận xiên \(y = x + 2.\)
Ta có bảng biến thiên:
Từ bảng biến thiên, ta thấy hàm số có 2 cực trị.
Quan sát các đồ thị đã cho, ta thấy đồ thị ở phương án A thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức sau:
\(G\left( x \right) = 0,025{x^2}\left( {30 - x} \right),\)
trong đó \(x\)là lượng thuốc được tiêm cho bệnh nhân (\(x\) được tính bằng miligam).
Liều lượng thuốc cần tiêm cho bệnh nhân nằm trong khoảng nào để huyết áp bệnh nhân tăng?
Câu 5:
Cho hàm số \(\left( C \right)\): \(y = \frac{{{x^2} - 3x + m}}{{x - 1}}.\)
a) Khảo sát và vẽ đồ thị hàm số \(\left( C \right)\) với \(m = - 4.\)
b) Với \(m = 2\), tính giá trị lớn nhất, giá trị nhỏ nhất của \(\left( C \right)\) trên đoạn \(\left[ {2;3} \right]\).
Câu 6:
về câu hỏi!