Câu hỏi:

09/10/2024 2,184 Lưu

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau: 

Câu 1. Hàm số đã cho đồng biến trên khoảng nào trong các khoảng dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Từ bảng biến thiên, ta thấy: Trên các khoảng \(\left( { - \infty ; - 2} \right)\)\(\left( {0; + \infty } \right)\), \(f'\left( x \right) > 0\), do đó hàm số đã cho đồng biến trên các khoảng này.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) Đ, d) Đ.

Hướng dẫn giải

Xét hàm số \(y = f\left( x \right) = \frac{{{x^2} + 4x + 7}}{{x + 1}} = x + 3 + \frac{4}{{x + 1}}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).

– Ta có \(y' = \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}}\); \(y' = 0\) khi \(x =  - 3\) hoặc \(x = 1\).

Bảng biến thiên của hàm số:

– Hàm số đồng biến trên từng khoảng \(\left( { - \infty ; - 3} \right)\)\(\left( {1; + \infty } \right)\); nghịch biến trên từng khoảng \(\left( { - 3; - 1} \right)\)\(\left( { - 1;1} \right)\). Do đó, ý a) đúng.

– Hàm số đã cho đạt cực tiểu tại \(x = 1\), \({y_{CT}} = 6\); đạt cực đại tại . Do đó, ý b) sai.

– Tiệm cận: Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x =  - 1\), tiệm cận xiên là đường thẳng \(y = x + 3\). Do đó, ý c) đúng.

– Giả sử đồ thị hàm số \(y = f\left( x \right)\)\(\left( C \right)\).

Điểm \(M\left( {x;\,y} \right) \in \left( C \right)\) có tọa độ nguyên khi \(\left\{ \begin{array}{l}x \in \mathbb{Z}\backslash \left\{ { - 1} \right\}\\y \in \mathbb{Z}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \in \mathbb{Z}\backslash \left\{ { - 1} \right\}\\4\,\, \vdots \,\,\left( {x + 1} \right)\end{array} \right.\).

Vì Ư(4) = \[\left\{ { \pm 1;\, \pm 2;\, \pm 4} \right\}\] nên ta có bảng sau:

\(x + 1\)

\( - 4\)

\( - 2\)

\( - 1\)

\(1\)

\(2\)

\(4\)

\(x\)

\( - 5\) (tm)

\( - 3\) (tm)

\( - 2\) (tm)

\(0\) (tm)

\(1\) (tm)

\(3\) (tm)

 

Vậy đồ thị hàm số \(y = f\left( x \right)\) đi qua 6 điểm có tọa độ nguyên nên ý d) đúng.

Câu 2

Lời giải

Đáp án đúng là: A

Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.

Dựa vào đồ thị, ta thấy, giao điểm này có tọa độ là \(\left( {2;\,2} \right)\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP