Đường cong trong hình dưới là đồ thị của hàm số nào trong bốn hàm số sau đây?

Đường cong trong hình dưới là đồ thị của hàm số nào trong bốn hàm số sau đây?

Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 12 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Dựa vào đồ thị hàm số ta thấy, đồ thị hàm số có tiệm cận đứng là \(x = 1\) và tiệm cận ngang là \(y = 1\), do vậy ta loại hai đáp án là C và D.
Xét đáp án A có \(y = \frac{{x + 1}}{{x - 1}} \Rightarrow y' = \frac{{ - 2}}{{{{\left( {x - 1} \right)}^2}}} < 0\) nên hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\), do đó đồ thị hàm số này đi xuống từ trái sang phải trên các khoảng này, vậy loại đáp án A và chọn đáp án B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.
Dựa vào đồ thị, ta thấy, giao điểm này có tọa độ là \(\left( {2;\,2} \right)\).
Lời giải
Diện tích của đáy bể là: \(S = \frac{V}{h} = \frac{{96\,\,000}}{{60}} = 1\,600\) cm2 \( = 0,16\) m2.
Gọi chiều dài đáy của bể là \(x\) (m, \(x > 0\)).
Chiều rộng đáy của bể là \(\frac{{0,16}}{x}\) (m).
Chi phí để hoàn thành bể cá là:
\(F\left( x \right) = 0,16 \cdot 100\,000 + 2 \cdot 0,6 \cdot x \cdot 70\,000 + 2 \cdot 0,6 \cdot \frac{{0,16}}{x} \cdot 70\,000\)
\( = 16\,000 + 84\,000x + \frac{{13\,440}}{x}\)(đồng).
Xét hàm số \(F\left( x \right) = 16\,000 + 84\,000x + \frac{{13\,440}}{x}\) với \(x \in \left( {0;\, + \infty } \right)\).
Ta có: \(F'\left( x \right) = 84\,000 - \frac{{13\,440}}{{{x^2}}}\). Trên khoảng \(\left( {0; + \infty } \right)\), \(F'\left( x \right) = 0 \Leftrightarrow x = 0,4\).
Bảng biến thiên của hàm số \(F\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\) như sau:

Căn cứ vào bảng biến thiên, ta thấy \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} F\left( x \right) = F\left( {0,4} \right) = 83\,200\).
Vậy chi phí thấp nhất để hoàn thành bể cá là \(83\,200\) đồng = \(83,2\) nghìn đồng.
Đáp số: \(83,2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

