Câu hỏi:

10/10/2024 3,153

Cho tứ diện \(ABCD\). Gọi \(E,\,F\) lần lượt là trọng tâm của các tam giác \(ABC\), \(ABD\). Khi đó ta có \(\overrightarrow {EF}  = \frac{a}{b}\overrightarrow {CD} \) (với \(\frac{a}{b}\) là phân số tối giản và \(a,b \in \mathbb{Z}\)). Giá trị của biểu thức \(M = a - b\) bằng bao nhiêu?

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(M,\,N\) lần lượt là trung điểm của \(BC,\,BD\).

Khi đó, ta có \(\frac{{AE}}{{AM}} = \frac{{AF}}{{AN}} = \frac{2}{3}\) (tính chất trọng tâm). Suy ra \(EF\,{\rm{//}}\,MN\)\(EF = \frac{2}{3}MN\).

Vì hai vectơ \[\overrightarrow {EF} \]\(\overrightarrow {MN} \) cùng hướng nên \(\overrightarrow {EF}  = \frac{2}{3}\overrightarrow {MN} \). (1)

Lại có \(MN\) là đường trung bình của tam giác \(BCD\) nên \(MN\,{\rm{//}}\,CD\)\(MN = \frac{1}{2}CD\).

Vì hai vectơ \(\overrightarrow {MN} \)\(\overrightarrow {CD} \) cùng hướng nên \(\overrightarrow {MN}  = \frac{1}{2}\overrightarrow {CD} \). (2)

Từ (1) và (2) suy ra \(\overrightarrow {EF}  = \frac{1}{3}\overrightarrow {CD} \). Do đó, \(a = 1,b = 3\). Vậy \(M = a - b =  - 2\).

Đáp số: \( - 2\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một chất điểm chuyển động theo phương trình \(s = f\left( t \right) = 0,5\cos \left( {2\pi t} \right)\), trong đó \(s\) tính bằng mét, \(t\) tính bằng giây. Gia tốc lớn nhất của chất điểm bằng bao nhiêu mét trên giây (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 10/10/2024 11,867

Câu 2:

Một chất điểm ở v trí đỉnh \(A\) của hình lập phương \(ABCD.A'B'C'D'\). Chất điểm chịu tác động bởi ba lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) lần lượt cùng hướng với \(\overrightarrow {AD} ,\,\overrightarrow {AB} ,\,\overrightarrow {AC'} \) như hình vẽ.

Độ lớn của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) tương ứng là 10 N, 10 N và 20 N. Độ lớn hợp lực của các lực \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \) bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 10/10/2024 7,591

Câu 3:

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Giả sử hàm số \(f\left( x \right) = {x^3} - 6{x^2} + 9x - 1\) đạt cực đại tại \(x = a\) và đạt cực tiểu tại \(x = b\). Giá trị của biểu thức \(A = 2a + b\) là bao nhiêu?

Xem đáp án » 10/10/2024 4,510

Câu 4:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\sqrt 2 \). Góc giữa hai vectơ \(\overrightarrow {AB'} \)\(\overrightarrow {A'C'} \) bằng:

Xem đáp án » 10/10/2024 3,546

Câu 5:

Trong không gian với hệ tọa độ \(Oxyz\), cho hai điểm \(A\left( {3; - 2; - 4} \right)\)\(B\left( {2;0;5} \right)\).

a) \(\overrightarrow {OA}  = 3\overrightarrow i  - 2\overrightarrow j  - 4\overrightarrow k \).

b) Tọa độ của vectơ \(\overrightarrow {AB} \)\(\left( {1; - 2; - 9} \right)\).

c) Điểm \(B\) nằm trong mặt phẳng \(\left( {Oxz} \right)\).

d) Cho vectơ \(\overrightarrow u  = \left( {1;3; - 7} \right)\), khi đó điểm \(C\) thỏa mãn \(\overrightarrow {AC}  = \overrightarrow u \) có tọa độ là \(\left( {4;1; - 11} \right)\).

Xem đáp án » 10/10/2024 2,650

Câu 6:

Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm \(A\left( {1;2; - 1} \right),\,B\left( {2; - 1;3} \right)\), \(C\left( { - 2;3;3} \right)\). Điểm \(M\left( {a;b;c} \right)\) là đỉnh thứ tư của hình bình hành \(ABCM\). Giá trị của biểu thức \(P = {a^2} + {b^2} - {c^2}\) bằng bao nhiêu?

Xem đáp án » 10/10/2024 1,543
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua