Câu hỏi:

10/10/2024 14,425 Lưu

Trong không gian với hệ trục tọa độ \[Oxyz\], điểm thuộc trục \(Ox\)và cách đều hai điểm \(A\left( {4;2; - 1} \right)\)\(B\left( {2;1;0} \right)\) là:

A. \(M\left( { - 4;0;0} \right)\).
B. \(M\left( {4;0;0} \right)\).
C. \(M\left( {5;0;0} \right)\).
D. \(M\left( { - 5;0;0} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Gọi điểm \(M\) thuộc trục \(Ox\) có tọa độ \(\left( {x;0;0} \right)\).

Theo đề, ta có \(M\) cách đều hai điểm \(A\left( {4;2; - 1} \right)\)\(B\left( {2;1;0} \right)\) hay \(MA = MB\).

Ta có: \(MA = MB\) \( \Rightarrow \)\(M{A^2} = M{B^2}\)

\( \Leftrightarrow {\left( {x - 4} \right)^2} + {(0 - 2)^2} + {\left[ {0 - \left( { - 1} \right)} \right]^2} = {\left( {2 - x} \right)^2} + {\left( {1 - 0} \right)^2} + {\left( {0 - 0} \right)^2}\)

\( \Leftrightarrow {x^2} - 8x + 16 + 4 + 1 = {x^2} - 4x + 4 + 1\)

\( \Leftrightarrow 4x = 16\)

\( \Leftrightarrow x = 4.\)

Vậy \(M\left( {4;0;0} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Gọi \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) là ba lực tác động vào vật tại điểm \(O\) lần lượt có độ lớn \(25N,12N,4N\).

Vẽ \(\overrightarrow {OA}  = \overrightarrow {{F_1}} ,\overrightarrow {OB}  = \overrightarrow {{F_2}} ,\overrightarrow {OC}  = \overrightarrow {{F_3}} \).

Dựng hình bình hành \(OADB\) và hình bình hành \(ODEC\).

Hợp lực tác động vào vật là:

\(\overrightarrow F  = \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OD}  + \overrightarrow {OC}  = \overrightarrow {OE} .\)

Áp dụng định lí côsin trong tam giác \(OBD\), ta có:

\(O{D^2} = B{D^2} + O{B^2} - 2.BD.OB.\cos \widehat {OBD} = O{A^2} + O{B^2} + 2.OA.OB.\cos 100^\circ \)

\(OC \bot \left( {OADB} \right)\) nên \(OC \bot OD\), suy ra \(ODEC\) là hình chữ nhật.

Do đó, tam giác \(DOE\) vuông tại \(D\).

Ta có: \(O{E^2} = O{C^2} + O{D^2} = O{C^2} + O{A^2} + O{B^2} + 2.OA.OB.\cos 100^\circ \).

Suy ra:

\(OE = \sqrt {O{C^2} + O{A^2} + O{B^2} + 2.OA.OB.\cos 100^\circ } \)\( = \sqrt {{4^2} + {{25}^2} + {{12}^2} + 2.25.12.\cos 100^\circ } \)

\(OE \approx 26N\).

Vậy độ lớn của hợp lực \(F = OE \approx 26N\).

Lời giải

Đáp án đúng là: B

Ta có: \(V(T) = 999,87 - 0,06426T + 0,0085043{T^2} - 0,0000679{T^3}.\)

     \( \Rightarrow V'\left( T \right) =  - 0,06426 + 0,0170086T - 2,{037.10^{ - 4}}{T^2}\)

\(V'\left( T \right) = 0 \Leftrightarrow  - 2,{037.10^{ - 4}}{T^2} + 0,0170086T - 0,06426 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}T \approx 79,53\,\,\,\,(L)\\T \approx 3,97\,\,\,\,\,(TM)\end{array} \right.\).

Ta có bảng xét dấu như sau:

Vậy thể tích giảm khi \(T \in \left( {0^\circ C;3,97^\circ C} \right)\).

Câu 3

A. \(y = \frac{{2{x^2} - 3x + 5}}{{x - 1}}\).
B. \(y = \frac{{ - 2{x^2} - 3x + 5}}{{x + 1}}\).
C. \(y = \frac{{{x^2} - 3x + 5}}{{x - 2}}\).
D. \(y = \frac{{ - 2{x^2} - 3x + 5}}{{ - x + 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hàm số \(y = x - \sqrt {x - 1} \). Khẳng định nào sau đây là đúng?

A. Hàm số đạt giá trị nhỏ nhất bằng \(\frac{3}{4}\) và không có giá trị lớn nhất.

B. Hàm số đạt giá trị nhỏ nhất bằng \(\frac{3}{4}\) và giá trị lớn nhất bằng \(1\).

C. Hàm số không có giá trị lớn nhất và giá trị nhỏ nhất.

D. Hàm số đạt giá trị lớn nhất tại điểm có hoành độ \(x = 1\) và giá trị lớn nhất bằng \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP