Câu hỏi:

11/10/2024 616 Lưu

III. Vận dụng

Cho phương trình \[3x + \left( {{m^2} + m} \right)y = 6\] có nghiệm \[\left( { - 2;6} \right)\]. Có bao nhiêu giá trị \(m\) thỏa mãn điều kiện trên?

A. 0.

B. 1.

C. 2.

D. 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Thay \[x = - 2,y = 6\] vào phương trình đã cho, ta được:

\[3 \cdot \left( { - 2} \right) + \left( {{m^2} + m} \right) \cdot 6 = 6\].

Giải phương trình:

\[3 \cdot \left( { - 2} \right) + \left( {{m^2} + m} \right) \cdot 6 = 6\]

\[6\left( {{m^2} + m} \right) = 12\]

\[{m^2} + m = 2\]

\({m^2} + m - 2 = 0\)

\({m^2} - m + 2m - 2 = 0\)

\(m\left( {m - 1} \right) + 2\left( {m - 1} \right) = 0\)

\(\left( {m - 1} \right)\left( {m + 2} \right) = 0\)

\(m - 1 = 0\) hoặc \(m + 2 = 0\)

\(m = 1\) hoặc \(m = - 2\)

Vậy có hai giá trị \(m\) thỏa mãn yêu cầu đề bài.

Do đó ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\left\{ \begin{array}{l}x - y = 2\\2x + y = 1\end{array} \right.\].

B. \[\left\{ \begin{array}{l}2x = 0\\x + 5y = 15\end{array} \right.\].

C. \[\left\{ \begin{array}{l}{x^2} - 4{y^2} = 0\\3x + 2y = 7\end{array} \right.\].

D. \[\left\{ \begin{array}{l}2x - y = - 5\\3y + 15 = 0\end{array} \right.\].

Lời giải

Đáp án đúng là: C

Ta thấy hệ phương trình \[\left\{ \begin{array}{l}{x^2} - 4{y^2} = 0\\3x + 2y = 7\end{array} \right.\] có chứa số hạng có bậc của \(x,\,\,y\) là 2 nên không phải là phương trình bậc nhất hai ẩn.

Câu 2

A. \(\left( {0;\,\,1} \right)\).

B. \(\left( {1;\,\,0} \right)\).

C. \(\left( {1;\,\,1} \right)\).

D. \(\left( { - 1;\,\,0} \right)\).

Lời giải

Đáp án đúng là: C

⦁ Thay \(x = 0\) và \(y = 1\) vào phương trình \(2x - y - 1 = 0\) ta được \(2 \cdot 0 - 1 - 1 = - 2 \ne 0\).

Do đó \(\left( {0;\,\,1} \right)\) không phải là nghiệm phương trình đã cho.

⦁ Thay \(x = 1\) và \(y = 0\) vào phương trình \(2x - y - 1 = 0\) ta được \(2 \cdot 1 - 0 - 1 = 1 \ne 0\).

Do đó \(\left( {1;\,\,0} \right)\) không phải là nghiệm phương trình.

⦁ Thay \(x = 1\) và \(y = 1\) vào phương trình \(2x - y - 1 = 0\) ta được \(2 \cdot 1 - 1 - 1 = 0\).

Do đó \(\left( {1;\,\,1} \right)\) là nghiệm phương trình đã cho.

⦁ Thay \(x = - 1\) và \(y = 0\) vào phương trình \(2x - y - 1 = 0\) ta được \(2 \cdot \left( { - 1} \right) - 0 - 1 = - 3 \ne 0\).

Do đó \(\left( { - 1;\,\,0} \right)\) không phải là nghiệm phương trình đã cho.

Vậy ta chọn phương án C.

Câu 3

A. \(a = 1;\,\,b = 1;\,\,c = 0\).

B. \(a = 1;\,\,b = 2;\,\,c = 1\).

C. \(a = 1;\,\,b = 2;\,\,c = - 1\).

D. \(a = 1;\,\,b = - 2;\,\,c = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(y = - 2x + 1\).

B. \(y = 2x - 1\).

C. \[y = \frac{2}{3}x - \frac{1}{3}.\]

D. \[y = \frac{2}{3}x + \frac{1}{3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x + 2y = 1\).

B. \(0x - 0y = 5\).

C. \(0x - y = 3\).

D. \(x + 0y = - 6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP