Câu hỏi:

11/10/2024 422

III. Vận dụng

Cho phương trình \[3x + \left( {{m^2} + m} \right)y = 6\] có nghiệm \[\left( { - 2;6} \right)\]. Có bao nhiêu giá trị \(m\) thỏa mãn điều kiện trên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Thay \[x = - 2,y = 6\] vào phương trình đã cho, ta được:

\[3 \cdot \left( { - 2} \right) + \left( {{m^2} + m} \right) \cdot 6 = 6\].

Giải phương trình:

\[3 \cdot \left( { - 2} \right) + \left( {{m^2} + m} \right) \cdot 6 = 6\]

\[6\left( {{m^2} + m} \right) = 12\]

\[{m^2} + m = 2\]

\({m^2} + m - 2 = 0\)

\({m^2} - m + 2m - 2 = 0\)

\(m\left( {m - 1} \right) + 2\left( {m - 1} \right) = 0\)

\(\left( {m - 1} \right)\left( {m + 2} \right) = 0\)

\(m - 1 = 0\) hoặc \(m + 2 = 0\)

\(m = 1\) hoặc \(m = - 2\)

Vậy có hai giá trị \(m\) thỏa mãn yêu cầu đề bài.

Do đó ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Ta thấy hệ phương trình \[\left\{ \begin{array}{l}{x^2} - 4{y^2} = 0\\3x + 2y = 7\end{array} \right.\] có chứa số hạng có bậc của \(x,\,\,y\) là 2 nên không phải là phương trình bậc nhất hai ẩn.

Câu 2

Lời giải

Đáp án đúng là: C

⦁ Thay \(x = 0\) và \(y = 1\) vào phương trình \(2x - y - 1 = 0\) ta được \(2 \cdot 0 - 1 - 1 = - 2 \ne 0\).

Do đó \(\left( {0;\,\,1} \right)\) không phải là nghiệm phương trình đã cho.

⦁ Thay \(x = 1\) và \(y = 0\) vào phương trình \(2x - y - 1 = 0\) ta được \(2 \cdot 1 - 0 - 1 = 1 \ne 0\).

Do đó \(\left( {1;\,\,0} \right)\) không phải là nghiệm phương trình.

⦁ Thay \(x = 1\) và \(y = 1\) vào phương trình \(2x - y - 1 = 0\) ta được \(2 \cdot 1 - 1 - 1 = 0\).

Do đó \(\left( {1;\,\,1} \right)\) là nghiệm phương trình đã cho.

⦁ Thay \(x = - 1\) và \(y = 0\) vào phương trình \(2x - y - 1 = 0\) ta được \(2 \cdot \left( { - 1} \right) - 0 - 1 = - 3 \ne 0\).

Do đó \(\left( { - 1;\,\,0} \right)\) không phải là nghiệm phương trình đã cho.

Vậy ta chọn phương án C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP