Câu hỏi:

13/10/2024 318

Trong không gian \(Oxyz\). Cho ba điểm \(A\left( { - 2;3;1} \right)\), \(B\left( {2;1;0} \right)\), \(C\left( { - 3; - 1;1} \right)\). Tìm tất cả các giá trị của tọa độ điểm \(D\) sao cho \(ABCD\) là hình thang có đáy \(AD\) và \({S_{ABCD}} = 3{S_{ABC}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Ta có: \({S_{ABCD}} = \frac{1}{2}\left( {AD + BC} \right).d\left( {A,BC} \right)\) \( \Leftrightarrow {S_{ABCD}} = \frac{1}{2}\left( {AD + BC} \right).\frac{{2{S_{ABC}}}}{{BC}}.\)

\( \Leftrightarrow 3{S_{ABC}} = \frac{{\left( {AD + BC} \right).{S_{ABC}}}}{{BC}} \Leftrightarrow 3BC = AD + BC \Leftrightarrow AD = 2BC\).

Mà \(ABCD\) là hình thang có đáy \(AD\) nên \(\overrightarrow {AD} = 2\overrightarrow {BC} \).

Ta có: \(\overrightarrow {BC} = \left( { - 5; - 2;1} \right)\), \(\overrightarrow {AD} = \left( {{x_D} + 2;{y_D} - 3;{z_D} - 1} \right)\).

Có \(\overrightarrow {AD} = 2\overrightarrow {BC} \) suy ra \(\left\{ \begin{array}{l}{x_D} + 2 = - 10\\{y_D} - 3 = - 4\\{z_D} - 1 = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = - 12\\{y_D} = - 1\\{z_D} = 3\end{array} \right.\).

Vậy \(D\left( { - 12; - 1;3} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

a) Chiếc khinh khí cầu thứ nhất có tọa độ là \(\left( {2;1;0,5} \right)\) nên ý a đúng.

b) Chiếc khinh khí cầu thứ hai có tọa độ là \(\left( { - 1; - 1,5;0,8} \right)\) nên ý b sai.

c)Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất

\(\sqrt {{2^2} + {1^2} + 0,{5^2}} = \frac{{\sqrt {21} }}{2}\) (km).

Do đó, ý c sai.

d) Khoảng cách hai chiếc khinh khí cầu là

\(\sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {1,5 - 1} \right)}^2} + {{\left( {0,8 - 0,5} \right)}^2}} = \sqrt {15,34} = 3,92\) (km).

Do đó, ý d đúng.

Lời giải

Đáp án đúng là: A

Ta có: \({d_1} = AB = \sqrt {{{\left( {1 - 5} \right)}^2} + {{\left( {1 - 7} \right)}^2} + {{\left( {1 - 9} \right)}^2}} = 2\sqrt {29} \);

\({d_2} = BC = \sqrt {{{\left( {5 - 9} \right)}^2} + {{\left( {7 - 11} \right)}^2} + {{\left( {9 - 4} \right)}^2}} \)\( = \sqrt {57} \);

\({d_3} = AC = \sqrt {{{\left( {1 - 9} \right)}^2} + {{\left( {1 - 11} \right)}^2} + {{\left( {1 - 4} \right)}^2}} = \sqrt {173} \).

Vậy \({d_1} + {d_2} + {d_3} = 2\sqrt {29} + \sqrt {57} + \sqrt {173} \) ≈ 31.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP