Trong không gian \(Oxyz\). Cho ba điểm \(A\left( { - 2;3;1} \right)\), \(B\left( {2;1;0} \right)\), \(C\left( { - 3; - 1;1} \right)\). Tìm tất cả các giá trị của tọa độ điểm \(D\) sao cho \(ABCD\) là hình thang có đáy \(AD\) và \({S_{ABCD}} = 3{S_{ABC}}\).
A. \(D\left( {8;7; - 1} \right).\)
B. \(\left[ \begin{array}{l}D\left( { - 8; - 7;1} \right)\\D\left( {12;1; - 3} \right)\end{array} \right..\)
C. \(\left[ \begin{array}{l}D\left( {8;7; - 1} \right)\\D\left( { - 12; - 1;3} \right)\end{array} \right..\)
D. \(\left( { - 12; - 1;3} \right).\)
Quảng cáo
Trả lời:

Đáp án đúng là: D
Ta có: \({S_{ABCD}} = \frac{1}{2}\left( {AD + BC} \right).d\left( {A,BC} \right)\) \( \Leftrightarrow {S_{ABCD}} = \frac{1}{2}\left( {AD + BC} \right).\frac{{2{S_{ABC}}}}{{BC}}.\)
\( \Leftrightarrow 3{S_{ABC}} = \frac{{\left( {AD + BC} \right).{S_{ABC}}}}{{BC}} \Leftrightarrow 3BC = AD + BC \Leftrightarrow AD = 2BC\).
Mà \(ABCD\) là hình thang có đáy \(AD\) nên \(\overrightarrow {AD} = 2\overrightarrow {BC} \).
Ta có: \(\overrightarrow {BC} = \left( { - 5; - 2;1} \right)\), \(\overrightarrow {AD} = \left( {{x_D} + 2;{y_D} - 3;{z_D} - 1} \right)\).
Có \(\overrightarrow {AD} = 2\overrightarrow {BC} \) suy ra \(\left\{ \begin{array}{l}{x_D} + 2 = - 10\\{y_D} - 3 = - 4\\{z_D} - 1 = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = - 12\\{y_D} = - 1\\{z_D} = 3\end{array} \right.\).
Vậy \(D\left( { - 12; - 1;3} \right)\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
a) Chiếc khinh khí cầu thứ nhất có tọa độ là \(\left( {2;1;0,5} \right)\) nên ý a đúng.
b) Chiếc khinh khí cầu thứ hai có tọa độ là \(\left( { - 1; - 1,5;0,8} \right)\) nên ý b sai.
c)Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất
\(\sqrt {{2^2} + {1^2} + 0,{5^2}} = \frac{{\sqrt {21} }}{2}\) (km).
Do đó, ý c sai.
d) Khoảng cách hai chiếc khinh khí cầu là
\(\sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {1,5 - 1} \right)}^2} + {{\left( {0,8 - 0,5} \right)}^2}} = \sqrt {15,34} = 3,92\) (km).
Do đó, ý d đúng.
Câu 2
A. \(31.\)
B. \(32.\)
C. \(25\).
D. \(5\)
Lời giải
Đáp án đúng là: A
Ta có: \({d_1} = AB = \sqrt {{{\left( {1 - 5} \right)}^2} + {{\left( {1 - 7} \right)}^2} + {{\left( {1 - 9} \right)}^2}} = 2\sqrt {29} \);
\({d_2} = BC = \sqrt {{{\left( {5 - 9} \right)}^2} + {{\left( {7 - 11} \right)}^2} + {{\left( {9 - 4} \right)}^2}} \)\( = \sqrt {57} \);
\({d_3} = AC = \sqrt {{{\left( {1 - 9} \right)}^2} + {{\left( {1 - 11} \right)}^2} + {{\left( {1 - 4} \right)}^2}} = \sqrt {173} \).
Vậy \({d_1} + {d_2} + {d_3} = 2\sqrt {29} + \sqrt {57} + \sqrt {173} \) ≈ 31.
Câu 3
A. \(\overrightarrow a = \left( {2;4;6} \right).\)
B. \(\overrightarrow b = \left( { - 3;6; - 9} \right).\)
C. \(\overrightarrow c = \left( {\frac{1}{2}; - 2;\frac{3}{2}} \right).\)
D. \(\overrightarrow d = \left( { - 1; - 2; - 3} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(m = 1,n = 1.\)
B. \(m = 1,n = 2.\)
C. \(m = 2,n = 1.\)
D. \(m = 2,n = 2.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\frac{9}{{2\sqrt {35} }}.\)
B. \( - \frac{9}{{\sqrt {35} }}.\)
C. \( - \frac{9}{{2\sqrt {35} }}.\)
D. \(\frac{9}{{\sqrt {35} }}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(60^\circ.\)
B. \(30^\circ.\)
C. \(45^\circ.\)
D. \(90^\circ.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.