Câu hỏi:
13/10/2024 55Trong không gian \(Oxyz\). Cho ba điểm \(A\left( { - 2;3;1} \right)\), \(B\left( {2;1;0} \right)\), \(C\left( { - 3; - 1;1} \right)\). Tìm tất cả các giá trị của tọa độ điểm \(D\) sao cho \(ABCD\) là hình thang có đáy \(AD\) và \({S_{ABCD}} = 3{S_{ABC}}\).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có: \({S_{ABCD}} = \frac{1}{2}\left( {AD + BC} \right).d\left( {A,BC} \right)\) \( \Leftrightarrow {S_{ABCD}} = \frac{1}{2}\left( {AD + BC} \right).\frac{{2{S_{ABC}}}}{{BC}}.\)
\( \Leftrightarrow 3{S_{ABC}} = \frac{{\left( {AD + BC} \right).{S_{ABC}}}}{{BC}} \Leftrightarrow 3BC = AD + BC \Leftrightarrow AD = 2BC\).
Mà \(ABCD\) là hình thang có đáy \(AD\) nên \(\overrightarrow {AD} = 2\overrightarrow {BC} \).
Ta có: \(\overrightarrow {BC} = \left( { - 5; - 2;1} \right)\), \(\overrightarrow {AD} = \left( {{x_D} + 2;{y_D} - 3;{z_D} - 1} \right)\).
Có \(\overrightarrow {AD} = 2\overrightarrow {BC} \) suy ra \(\left\{ \begin{array}{l}{x_D} + 2 = - 10\\{y_D} - 3 = - 4\\{z_D} - 1 = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = - 12\\{y_D} = - 1\\{z_D} = 3\end{array} \right.\).
Vậy \(D\left( { - 12; - 1;3} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất cách điểm xuất phát 2 km về phía nam và 1 km về phía đông, đồng thời cách mặt đất 0,5 km. chiếc thứ hai mằm cách điểm xuất phát 1 km về phía bắc và 1,5 km về phía tây, đồng thời cách mặt đất 0,8 m. Chọn hệ trục \(Oxyz\) với O là gốc đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \[Oy\] hướng về phía đông và trục \(Oz\) hướng thẳng đứng lên trời, đơn vị đo lấy theo kilomet.
Khi đó:
a) Với hệ tọa độ đã chọn, tọa độ khinh khí cầu thứ nhất là \(\left( {2;1;0,5} \right)\).
b) Với hệ tọa độ đã chọn, tọa độ khinh khí cầu thứ hai là \(\left( { - 1,5; - 1;0,8} \right)\).
c) Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất bằng \(\sqrt {21} \) km.
d) Khoảng cách hai chiếc khinh khí cầu là 3,92 km (Kết quả làm tròn đến hàng phần trăm).
Số khẳng định đúng trong các khẳng định trên là:
Câu 2:
Trong không gian \(Oxyz\), cho ba điểm \(A\left( { - 1; - 2;3} \right)\), \(B\left( {0;3;1} \right)\), \(C\left( {4;2;2} \right)\). Giá trị \(\cos \left( {\widehat {BAC}} \right)\) bằng
Câu 3:
Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow u = \left( {1; - 2;3} \right)\). Vectơ nào sau đây cùng phương với vectơ \(\overrightarrow u \) ?
Câu 4:
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow a = \left( {1; - 2;3} \right)\) và \(\overrightarrow b = \left( { - 2;1;2} \right)\). Tích vô hướng \(\left( {\overrightarrow a + \overrightarrow b } \right)\overrightarrow b \) bằng
Câu 5:
Trên phần mềm mô phỏng việc điều khiển drone giao hàng trong không gian \(Oxyz\), một đội gồm ba drone giao hàng \(A,B,C\) đang có tọa độ là \(A\left( {1;1;1} \right)\), \(B\left( {5;7;9} \right)\), \(C\left( {9;11;4} \right)\). Gọi \({d_1},{d_2},{d_3}\) lần lượt là khoảng cách của mỗi cặp drone giao hàng trên. Tính \({d_1} + {d_2} + {d_3}\). (Kết quả làm tròn đến hàng đơn vị).
Câu 6:
Trong không gian \(Oxyz\), cho ba điểm \(A\left( {0;1; - 1} \right)\), \(B\left( {1;2;0} \right)\), \(\left( {m;n;0} \right)\). Giá trị \(m,n\) sao cho ba điểm \(A,B,C\) thẳng hàng:
Câu 7:
Trong không gian \(Oxyz\), cho các điểm \(A\left( {1;3;5} \right)\), \(B\left( {1;1;3} \right)\), \(C\left( {4; - 2;3} \right)\).
Khi đó:
a) Tọa độ trung điểm \(BC\) là \(\left( {\frac{5}{2}; - \frac{1}{2};3} \right)\).
b) Độ dài đoạn thẳng \(BC\) là \(3\sqrt 2 \).
c) Côsin \(\widehat {BAC}\) bằng \(\frac{{7\sqrt {19} }}{{38}}\).
d) Gọi \(D\) là đỉnh thứ tư của hình bình hành \(ABCD\). Tọa độ hình chiếu của trọng tâm tam giác \(ABD\) lên mặt phẳng \(Oyz\) là \(\left( {2;0;0} \right)\).
Số mệnh đề đúng trong các mệnh đề trên là:
về câu hỏi!