Biểu đồ dưới đây thống kê thời gian tập thể dục buổi sáng mỗi ngày trong tháng 9/2022 của bác Bình và bác An.

Xét các mệnh đề dưới đây:
a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là 25 (phút).
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là \(\Delta Q = 2.\)
c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An là \({Q_3} = \frac{{455}}{{16}}\).
d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng mỗi ngày của bác An lớn hơn bác Bình.
Số mệnh đề đúng là:
Quảng cáo
Trả lời:

Đáp án đúng là: A
Khoảng biến thiên về thời gian tập thể dục của Bác Bình là: \(R = 40 - 15 = 25\) (phút).
Từ đồ thị, ta có bảng số liệu sau:

Với mẫu số liệu ghép nhóm của bác Bình, ta có:
\(\frac{n}{4} = \frac{{30}}{4} = 7,5\) nên \({Q_1} \in \left[ {20;25} \right)\) do đó \({Q_1} = 20 + \frac{{7,5 - 5}}{{12}}\left( {25 - 20} \right) = \frac{{505}}{{24}}.\)
\(\frac{{3n}}{4} = \frac{{3.30}}{4} = 22,5\) nên \({Q_3} \in \left[ {25;30} \right)\) do đó \({Q_3} = 25 + \frac{{22,5 - \left( {5 + 12} \right)}}{8}\left( {30 - 25} \right) = \frac{{455}}{{16}}\).
Do đó, \(\Delta Q = {Q_3} - {Q_1} = \frac{{355}}{{48}} \approx 7,4.\)
Với mẫu số liệu ghép nhóm của bác An, ta có:
\(\frac{n}{4} = \frac{{30}}{4} = 7,5\) nên \({Q_1} \in \left[ {20;25} \right)\) do đó \({Q_1} = 20 + \frac{{7,5 - 0}}{{25}}\left( {25 - 20} \right) = 21,5.\)
\(\frac{{3n}}{4} = \frac{{3.30}}{4} = 22,5\) nên \({Q_3} \in \left[ {20;25} \right)\) do đó \({Q_3} = 20 + \frac{{22,5 - 0}}{{25}}\left( {25 - 20} \right) = 24,5.\)
Do đó, \(\Delta Q = {Q_3} - {Q_1} = 3.\)
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về số ngày tập thể dục của bác Bình lớn hơn bác An.
Vậy chỉ có 1 ý đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có: \(\frac{n}{4} = 3\) nên nhóm chứa tứ phân vị thứ nhất là \(\left[ {50;60} \right)\).
Do đó, \({Q_1} = 50 + \frac{{3 - 2}}{6}\left( {60 - 50} \right) = \frac{{155}}{3}.\)
Ta có: \(\frac{{3n}}{4} = 9\) nên nhóm chứa tứ phân vị thứ ba là \(\left[ {60;70} \right)\).
Do đó, \({Q_3} = 60 + \frac{{9 - \left( {2 + 6} \right)}}{4}\left( {70 - 60} \right) = 62,5.\)
Khoảng tứ phân vị của mẫu số liệu trên là:
\(\Delta Q = {Q_3} - {Q_1} = 62,5 - \frac{{155}}{3} = \frac{{65}}{6}\).
Lời giải
Đáp án đúng là: A
Cỡ mẫu \(n = 3 + 5 + 10 + 6 + 2 = 26\).
Ta có: \(\frac{n}{4} = 6,5\) nên nhóm chứa tứ phân vị thứ nhất là \(\left[ {6;7} \right)\).
Do đó, \({Q_1} = 6 + \frac{{6,5 - 3}}{5}\left( {7 - 6} \right) = 6,7.\)
Ta có: \(\frac{{3n}}{4} = 19,5\) nên nhóm chứa tứ phân vị thứ ba là \(\left[ {8;9} \right)\).
Do đó, \({Q_3} = 8 + \frac{{19,5 - \left( {3 + 5 + 10} \right)}}{6}\left( {9 - 8} \right) = 8,25\).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là:
\(\Delta Q = 8,25 - 6,7 = 1,55\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.