Trong không gian \[Oxyz\], cho hai đường thẳng \[{d_1}:\frac{{x - 6}}{1} = \frac{{y - 4}}{{ - 4}} = \frac{{z - 4}}{1}\] và \[{d_2}:\frac{{x - 2}}{1} = \frac{{y - 2}}{2} = \frac{z}{{ - 2}}\]. Viết phương trình đường thẳng \[\Delta \] là đường vuông góc chung của hai đường thẳng \[{d_1}\] và \[{d_2}\].
Quảng cáo
Trả lời:

Đáp án đúng là: C
Giả sử \[A = \Delta \cap {d_1}\], \[B = \Delta \cap {d_2}\].
Ta có: \[A \in {d_1}\] nên \[A\left( {t + 6; - 4t + 4;t + 4} \right)\], \[B \in {d_2}\] nên \[B\left( {a + 2;2a + 2; - 2a} \right)\].
Suy ra \[\overrightarrow {AB} = \left( {a - t - 4;2a + 4t - 2; - 2a - t - 4} \right)\].
Vì \[\overrightarrow {AB} \bot {d_1},\overrightarrow {AB} \bot {d_2}\] nên ta có:
\[\left\{ \begin{array}{l}\overrightarrow {AB} \bot {\overrightarrow u _{{d_1}}} = 0\\\overrightarrow {AB} \bot {\overrightarrow u _{{d_2}}} = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a - t - 4 + \left( { - 4} \right)\left( {2a + 4t - 2} \right) - 2a - t - 4 = 0\\a - t - 4 + 2\left( {2a + 4t - 2} \right) - 2\left( { - 2a - t - 4} \right) = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l} - 9a - 18t = 0\\9a + 9t = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\t = 0\end{array} \right.\]
Suy ra \[A\left( {6;4;4} \right)\] và \[B\left( {2;2;0} \right)\].
Do đường thẳng \[\Delta \] đi qua \[A\] và \[B\] nên có vectơ chỉ phương
\[\overrightarrow u = \overrightarrow {AB} = \left( { - 4; - 2; - 4} \right) = - 2\left( {2;1;2} \right)\].
Gọi \[I\] là trung điểm của đoạn thẳng \[AB\] nên tọa độ điểm \[I\left( {4;3;2} \right)\].
Do đó, phương trình đường thẳng \[\Delta \] là \[\frac{{x - 4}}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{2}.\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Ta có vectơ chỉ phương của đường thẳng \[AB\] là \[\overrightarrow u = \overrightarrow {AB} = \left( {4;2; - 4} \right) = - 2\left( { - 2; - 1;2} \right)\].
Suy ra \[\overrightarrow u = \left( { - 2; - 1;2} \right)\] là một vectơ chỉ phương của đường thẳng.
Do đó, phương trình đường thẳng thỏa mãn là: \[\frac{{x - 3}}{{ - 2}} = \frac{{y - 3}}{{ - 1}} = \frac{{z - 1}}{2}.\]
Lời giải
Đáp án đúng là: B
Tọa độ trọng tâm tam giác \[OAB\] là \[G\left( {0;2;2} \right)\].
Ta có: \[\overrightarrow {OA} = \left( {1;4;2} \right)\], \[\overrightarrow {OB} = \left( { - 1;2;4} \right)\];
\[{\overrightarrow n _P} = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&2\\2&4\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\4&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\{ - 1}&4\end{array}} \right|} \right)\]\[ = \left( {12; - 6;6} \right) = 6\left( {2; - 1;1} \right).\]
Do \[d\] vuông góc với \[\left( {OAB} \right)\] nên \[{\overrightarrow u _d} = {\overrightarrow n _P} = \left( {2; - 1;1} \right)\].
Phương trình đường thẳng \[d\] là: \[d:\frac{x}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 2}}{1}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.