Câu hỏi:

14/10/2024 16,287

Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất cách điểm xuất phát 2 km về phía nam và 1 km về phía đông, đồng thời cách mặt đất 0,5 km. chiếc thứ hai mằm cách điểm xuất phát 1 km về phía bắc và 1,5 km về phía tây, đồng thời cách mặt đất 0,8 m. Chọn hệ trục \(Oxyz\) với O là gốc đặt tại điểm xuất phát của hai khinh khí cầu, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục \(Ox\) hướng về phía nam, trục \[Oy\] hướng về phía đông và trục \(Oz\) hướng thẳng đứng lên trời, đơn vị đo lấy theo kilomet.

Hai chiếc khinh khí cầu bay lên từ cùng một địa điểm. Chiếc thứ nhất cách điểm xuất phát 2 km về phía nam và 1 km về phía đông, đồng thời cách mặt đất 0,5 km. chiếc thứ hai mằm cách điểm xuất phát 1 km về phía bắc và 1,5 km (ảnh 1)

Khi đó:

a) Với hệ tọa độ đã chọn, tọa độ khinh khí cầu thứ nhất là \(\left( {2;1;0,5} \right)\).

b) Với hệ tọa độ đã chọn, tọa độ khinh khí cầu thứ hai là \(\left( { - 1,5; - 1;0,8} \right)\).

c) Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất bằng \(\sqrt {21} \) km.

d) Khoảng cách hai chiếc khinh khí cầu là 3,92 km (Kết quả làm tròn đến hàng phần trăm).

Số khẳng định đúng trong các khẳng định trên là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

a) Chiếc khinh khí cầu thứ nhất có tọa độ là \(\left( {2;1;0,5} \right)\) nên ý a đúng.

b) Chiếc khinh khí cầu thứ hai có tọa độ là \(\left( { - 1; - 1,5;0,8} \right)\) nên ý b sai.

c)Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất

\(\sqrt {{2^2} + {1^2} + 0,{5^2}} = \frac{{\sqrt {21} }}{2}\) (km).

Do đó, ý c sai.

d) Khoảng cách hai chiếc khinh khí cầu là

\(\sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {1,5 - 1} \right)}^2} + {{\left( {0,8 - 0,5} \right)}^2}} = \sqrt {15,34} = 3,92\) (km).

Do đó, ý d đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Ta có: \(\overrightarrow {AB} = \left( {1;5; - 2} \right)\), \(\overrightarrow {AC} = \left( {5;4; - 1} \right)\).

Do đó, \(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{1.5 + 5.4 + \left( { - 2} \right)\left( { - 1} \right)}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{5^2} + {4^2} + {{\left( { - 1} \right)}^2}} }} = \)\(\frac{9}{{2\sqrt {35} }}\).

Lời giải

Đáp án đúng là: C

a) Gọi \(I\left( {x;y;z} \right)\) là trung điểm \(BC\).

Ta có: \(\left\{ \begin{array}{l}x = \frac{{1 + 4}}{2} = \frac{5}{2}\\y = \frac{{1 + \left( { - 2} \right)}}{2} = - \frac{1}{2}\\z = \frac{{3 + 3}}{2} = 3\end{array} \right.\) ⇒ \(I\left( {\frac{5}{2}; - \frac{1}{2};3} \right)\).

Vậy a đúng.

b) Ta có: \(\overrightarrow {BC} = \left( {3; - 3;0} \right)\) ⇒ \(BC = \sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {0^2}} = 3\sqrt 2 \) suy ra b đúng.

c) Ta có: \(\overrightarrow {AB} = \left( {0; - 2; - 2} \right),\overrightarrow {AC} = \left( {3; - 5; - 2} \right)\).

Do đó, \(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}}\)

\( = \frac{{0.3 + \left( { - 2} \right).\left( { - 5} \right) + \left( { - 2} \right).\left( { - 2} \right)}}{{\sqrt {{0^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{3^2} + {{\left( { - 5} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{7\sqrt {19} }}{{38}}.\)

Vậy ý c đúng.

d) Gọi \(D\left( {x;y;z} \right)\). Có \(\overrightarrow {AB} = \overrightarrow {DC} \).

Ta có: \(\overrightarrow {AB} = \left( {0; - 2; - 2} \right)\), \(\overrightarrow {DC} = \left( {4 - x; - 2 - y;3 - z} \right)\).

Suy ra \(\left\{ \begin{array}{l}4 - x = 0\\ - 2 - y = - 2\\3 - z = - 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 0\\z = 5\end{array} \right.\) ⇒ \(D\left( {4;0;5} \right)\).

Gọi \(G\left( {a;b;c} \right)\) là trọng tâm tam giác \(ABD\).

Ta có: \(\left\{ \begin{array}{l}a = \frac{{1 + 1 + 4}}{3} = 2\\b = \frac{{3 + 1 + 0}}{3} = \frac{4}{2}\\c = \frac{{5 + 3 + 5}}{3} = \frac{{13}}{3}\end{array} \right.\) ⇒ \(G\left( {2;\frac{4}{3};\frac{{13}}{3}} \right)\).

Tọa độ hình chiếu của trọng tâm \(G\) của tam giác \(ABD\) lên mặt phẳng \(Oyz\) là \(\left( {0;\frac{4}{3};\frac{{13}}{3}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP