III. Vận dụng
Trên phần mềm mô phỏng việc điều khiển drone giao hàng trong không gian \(Oxyz\), một đội gồm ba drone giao hàng \(A,B,C\) đang có tọa độ là \(A\left( {1;1;1} \right)\), \(B\left( {5;7;9} \right)\), \(C\left( {9;11;4} \right)\). Gọi \({d_1},{d_2},{d_3}\) lần lượt là khoảng cách của mỗi cặp drone giao hàng trên. Tính \({d_1} + {d_2} + {d_3}\). (Kết quả làm tròn đến hàng đơn vị).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \({d_1} = AB = \sqrt {{{\left( {1 - 5} \right)}^2} + {{\left( {1 - 7} \right)}^2} + {{\left( {1 - 9} \right)}^2}} = 2\sqrt {29} \);
\({d_2} = BC = \sqrt {{{\left( {5 - 9} \right)}^2} + {{\left( {7 - 11} \right)}^2} + {{\left( {9 - 4} \right)}^2}} \)\( = \sqrt {57} \);
\({d_3} = AC = \sqrt {{{\left( {1 - 9} \right)}^2} + {{\left( {1 - 11} \right)}^2} + {{\left( {1 - 4} \right)}^2}} = \sqrt {173} \).
Vậy \({d_1} + {d_2} + {d_3} = 2\sqrt {29} + \sqrt {57} + \sqrt {173} \) ≈ 31.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
a) Chiếc khinh khí cầu thứ nhất có tọa độ là \(\left( {2;1;0,5} \right)\) nên ý a đúng.
b) Chiếc khinh khí cầu thứ hai có tọa độ là \(\left( { - 1; - 1,5;0,8} \right)\) nên ý b sai.
c)Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất
\(\sqrt {{2^2} + {1^2} + 0,{5^2}} = \frac{{\sqrt {21} }}{2}\) (km).
Do đó, ý c sai.
d) Khoảng cách hai chiếc khinh khí cầu là
\(\sqrt {{{\left( { - 1 - 2} \right)}^2} + {{\left( {1,5 - 1} \right)}^2} + {{\left( {0,8 - 0,5} \right)}^2}} = \sqrt {15,34} = 3,92\) (km).
Do đó, ý d đúng.
Lời giải
Đáp án đúng là: A
Ta có: \(\overrightarrow {AB} = \left( {1;5; - 2} \right)\), \(\overrightarrow {AC} = \left( {5;4; - 1} \right)\).
Do đó, \(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{1.5 + 5.4 + \left( { - 2} \right)\left( { - 1} \right)}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{5^2} + {4^2} + {{\left( { - 1} \right)}^2}} }} = \)\(\frac{9}{{2\sqrt {35} }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.