Câu hỏi:

14/10/2024 131

Cho hàm số \[f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 1,{\rm{ }}x \ge 2\\{x^2} - 2x + 3,{\rm{ }}x < 2\end{array} \right.\]. Tính tích phân \[I = \frac{1}{2}\int\limits_1^3 {f\left( x \right)dx} \] bằng bao nhiêu?

</>

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \[I = \frac{1}{2}\left[ {\int\limits_1^2 {f\left( x \right)dx} + \int\limits_2^3 {f\left( x \right)dx} } \right]\]

\[ = \frac{1}{2}\left[ {\int\limits_1^2 {\left( {{x^2} - 2x + 3} \right)dx} + \int\limits_2^3 {\left( {{x^2} - 1} \right)dx} } \right]\]

\[ = \frac{1}{2}\left[ {\left. {\left( {\frac{{{x^3}}}{3} - {x^2} + 3x} \right)} \right|_1^2 + \left. {\left( {\frac{{{x^3}}}{3} - x} \right)} \right|_2^3} \right] = \frac{{23}}{6}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết \[\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\left( {2\sin x + 3\cos x + x} \right)dx = \frac{{a + b\sqrt 3 }}{2} + \frac{{5{\pi ^2}}}{c}} \] với \[\left( {a,b,c \in \mathbb{Z}} \right)\]. Khi đó giá trị của \[P = a + 2b + 3c\] là

Xem đáp án » 14/10/2024 855

Câu 2:

I. Nhận biết

Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \[\left[ {a;b} \right]\]. Gọi \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên đoạn \[\left[ {a;b} \right]\]. Chọn mệnh đề đúng.

Xem đáp án » 14/10/2024 106

Câu 3:

Cho \[f\left( x \right) = \left\{ \begin{array}{l}1,{\rm{ }}x \ge 1\\2x - 1,{\rm{ }}x < 1\end{array} \right.\]. Tính giá trị \[I = \int\limits_{ - 1}^2 {f\left( x \right)dx} \]

</>

Xem đáp án » 14/10/2024 106

Câu 4:

Cho \[\int\limits_{ - 3}^0 {f\left( x \right)dx = - 4} \] và \[\int\limits_{ - 3}^0 {g\left( x \right)dx = - 3} \]. Xét các mệnh đề sau:

a) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx = - 7} .\]

b) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx = 1} .\]

c) \[\int\limits_{ - 3}^0 { - 3f\left( x \right)dx = 12} .\]

d) \[\int\limits_{ - 3}^0 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx = - 51} .\]

Số mệnh đề đúng trong các mệnh đề trên là

Xem đáp án » 14/10/2024 106

Câu 5:

Vận tốc của một vật chuyển động là \[v\left( t \right) = 3{t^2} + 5{\rm{ }}\left( {m/s} \right)\]. Quãng đường vật đó đi được từ giây thứ 4 đến giây thứ 10 là

Xem đáp án » 14/10/2024 100

Câu 6:

Cho hàm số \[f\left( x \right)\] nhận giá trị không âm và có đạo hàm liên tục trên \[\mathbb{R}\] thỏa mãn \[f'\left( x \right) = \left( {2x + 1} \right){\left[ {f\left( x \right)} \right]^2},\forall x \in \mathbb{R}\] và \[f\left( 0 \right) = - 1\].

Giá trị của tích phân \[\int\limits_0^1 {\left( {{x^3} - 1} \right)f\left( x \right)dx} \] bằng

Xem đáp án » 14/10/2024 92

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store