Câu hỏi:
14/10/2024 250Một chất điểm đang chuyển động với vận tốc \[{v_0} = 15\] m/s thì tăng tốc với gia tốc \[a\left( t \right) = {t^2} + 4t\] (m/s2). Tính quãng đường vật đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng tốc.
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có: \[a\left( t \right) = {t^2} + 4t\] suy ra \[v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( {{t^2} + 4t} \right)} dt = \frac{{{t^3}}}{3} + 2{t^2} + C.\]
Mà \[{v_0} = 15\]m/s nên C = 15.
Do đó, \[v\left( t \right) = \frac{{{t^3}}}{3} + 2{t^2} + 15\].
Quãng đường vật đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng tốc là
\[s\left( t \right) = \int\limits_0^3 {v\left( t \right)dt} = \int\limits_0^3 {\left( {\frac{{{t^3}}}{3} + 2{t^2} + 15} \right)} dt = 69,75\] m.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có: \[\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\left( {2\sin x + 3\cos x + x} \right)dx} \]
\[ = \left. {\left( { - 2\cos x + 3\sin x + \frac{{{x^2}}}{2}} \right)} \right|_{\frac{\pi }{3}}^{\frac{\pi }{2}}\]
\[ = 3 + \frac{{{\pi ^2}}}{8} + 1 - \frac{{3\sqrt 3 }}{2} - \frac{{{\pi ^2}}}{{18}} = \frac{{8 - 3\sqrt 3 }}{2} - \frac{{5{\pi ^2}}}{{72}}\].
Do đó, \[a = 8,b = - 3,c = 72.\]
Vậy \[P = a + 2b + 3c = 8 + 2.\left( { - 3} \right) + 3.72 = 218.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.