Câu hỏi:
16/10/2024 1,702Trong không gian, cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Trong các mệnh đề dưới đây, có bao nhiêu mệnh đề sai?
a) \(\overrightarrow {B'B} - \overrightarrow {DB} = \overrightarrow {B'D} .\)
b) \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow {BD} .\)
c) \(\left| {\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} } \right| = a\sqrt 2 .\)
d) \(\left| {\overrightarrow {BC} - \overrightarrow {BA} + \overrightarrow {C'A} } \right| = a.\)
Quảng cáo
Trả lời:
Đáp án đúng là: A
a) \(\overrightarrow {B'B} - \overrightarrow {DB} = \overrightarrow {BB'} + \overrightarrow {BD} = \overrightarrow {B'D} \) ⇒ a) đúng.
b) \(\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} = \overrightarrow {BD} + \overrightarrow {BB'} = \overrightarrow {BD'} \) ⇒ b) sai.
c) Ta có: \(\left| {\overrightarrow {BA} + \overrightarrow {BC} + \overrightarrow {BB'} } \right| = \left| {\overrightarrow {BD'} } \right| = \sqrt {A{B^2} + B{C^2} + B{{B'}^2}} = a\sqrt 3 \) ⇒ c) sai.
d) Ta có: \(\left| {\overrightarrow {BC} - \overrightarrow {BA} + \overrightarrow {C'A} } \right| = \left| {\overrightarrow {AC} + \overrightarrow {C'A} } \right| = \left| {\overrightarrow {C'C} } \right| = a\) ⇒ d) đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Xét tứ diện
\(ABCD\) cạnh \(a\) ta có: \(\overrightarrow {DM} = \frac{{a\sqrt 3 }}{2};AM = \frac{{a\sqrt 3 }}{2}\).
Ta có: \(\overrightarrow {AB} .\overrightarrow {DM} = \overrightarrow {AB} .\left( {\overrightarrow {AM} - \overrightarrow {AD} } \right) = \overrightarrow {AB} .\overrightarrow {AM} - \overrightarrow {AB} .\overrightarrow {AD} \)
\( = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AM} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AM} } \right) - \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AD} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right)\)
= \(a.\frac{{a\sqrt 3 }}{2}.\frac{{\sqrt 3 }}{2} - a.a.\frac{1}{2} = \frac{{{a^2}}}{4}\).
Ta có: \(\cos \left( {\overrightarrow {AB} ,\overrightarrow {DM} } \right)\) = \(\frac{{\overrightarrow {AB} .\overrightarrow {DM} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {DM} } \right|}} = \frac{{\frac{{{a^2}}}{4}}}{{a.\frac{{a\sqrt 3 }}{2}}} = \frac{{\sqrt 3 }}{6}\).
Lời giải
Đáp án đúng là: D
Ta có:
\(ABCD.A'B'C'D'\) là hình lập phương.
Do đó, \(\left( {\overrightarrow {AB} ,\overrightarrow {A'D'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {DAB} = 90^\circ ;\)
\(\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC} = 45^\circ \);
\(\left( {\overrightarrow {AC} ,\overrightarrow {B'D'} } \right) = \left( {\overrightarrow {AC} ,\overrightarrow {BD} } \right) = 90^\circ ;\)
\(\left( {\overrightarrow {A'A} ,\overrightarrow {CB'} } \right) = \left( {\overrightarrow {C'C} ,\overrightarrow {CB'} } \right) = 180^\circ - \widehat {C'CB'} = 135^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.