Câu hỏi:
16/10/2024 233Trong không gian với hệ tọa độ \[Oxyz\], cho các điểm \[A\left( {0;1;2} \right),B\left( {2; - 2;0} \right),\] \[C\left( { - 2;0;1} \right)\]. Mặt phẳng \[\left( P \right)\] đi qua \[A\], trực tâm \[H\] của tam giác \[ABC\] và vuông góc với mặt phẳng \[\left( {ABC} \right)\] có phương trình là
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \[\overrightarrow {AB} = \left( {2; - 3; - 2} \right)\], \[\overrightarrow {AC} = \left( { - 2; - 1; - 1} \right)\] nên
\[\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 3}&{ - 2}\\{ - 1}&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&2\\{ - 1}&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&{ - 3}\\{ - 2}&{ - 1}\end{array}} \right|} \right) = \left( {1;6; - 8} \right)\].
Phương trình mặt phẳng \[\left( {ABC} \right)\] là \[x + 6y - 8z + 10 = 0.\]
Phương trình mặt phẳng \[B\] và vuông góc với \[AC\] là: \[2x + y + z - 2 = 0.\]
Phương trình mặt phẳng \[C\] và vuông góc với \[AB\] là: \[2x - 3y - 2z + 6 = 0.\]
Giao điểm của ba mặt phẳng trên là trực tâm \[H\] của tam giác \[ABC\] nên ta có tọa độ điểm \[H\] là \[\left( { - \frac{{22}}{{101}}; - \frac{{31}}{{101}}; - \frac{{26}}{{101}}} \right) = - \frac{1}{{101}}\left( {22;31;26} \right).\]
Suy ra \[\overrightarrow {AH} = \left( { - \frac{{22}}{{101}}; - \frac{{31}}{{101}}; - \frac{{26}}{{101}}} \right)\]
Mặt phẳng \[\left( P \right)\] đi qua \[A\], \[H\] nên \[\overrightarrow {{n_P}} \bot \overrightarrow {AH} \].
Mặt phẳng \[\left( P \right) \bot \left( {ABC} \right)\] nên \[\overrightarrow {{n_P}} \bot {\overrightarrow n _{\left( {ABC} \right)}} = \left( {1;6; - 8} \right).\]
Vậy \[{\overrightarrow n _P} = \left[ {{{\overrightarrow n }_{\left( {ABC} \right)}},\overrightarrow {AH} } \right] = \left( {404; - 202; - 101} \right) = 101\left( {4; - 2;1} \right).\]
Do đó, \[{\overrightarrow n _P} = \left( {4; - 2;1} \right)\] cũng là một vectơ pháp tuyến của \[\left( P \right)\].
Phương trình mặt phẳng \[\left( P \right)\] là \[4x - 2y - z + 4 = 0.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
I. Nhận biết
Cho hình lập phương \[ABCD.A'B'C'D'\]. Vectơ nào là vectơ pháp tuyến của mặt phẳng \[\left( {ABCD} \right)\]?
Câu 2:
II. Thông hiểu
Trong không gian \[Oxyz\], phương trình mặt phẳng \[\left( P \right)\] đi qua điểm \[A\left( {2;1;3} \right)\] và có vectơ pháp tuyến \[\overrightarrow n = \left( {2;3; - 1} \right)\] là
Câu 3:
Trong không gian \[Oxyz\], vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng \[\left( P \right)\], biết \[\overrightarrow a = \left( { - 1; - 2; - 2} \right)\], \[\overrightarrow b = \left( { - 1;0; - 1} \right)\]là cặp vectơ chỉ phương của \[\left( P \right)\]?
Câu 4:
Trong không gian với hệ tọa độ \[Oxyz\], cho hai điểm \[A\left( {3;1;7} \right);B\left( {5;5;1} \right)\] và mặt phẳng \[\left( P \right):2x - y - z + 4 = 0\]. Điểm \[M\] thuộc \[\left( P \right)\] sao cho \[MA = MB = \sqrt {35} \]. Biết \[M\] có hoành độ nguyên, tính \[OM\].
Câu 5:
Trong không gian \[Oxyz\], cho \[A\left( {0;1;1} \right)\], \[B\left( {1;2;3} \right)\]. Viết phương trình mặt phẳng \[\left( P \right)\] đi qua \[A\] và vuông góc với đường thẳng \[AB\].
Câu 6:
Trong không gian \[Oxyz\], cho mặt phẳng \[\left( P \right):2x - y + 2z - 4 = 0\]. Gọi \[H\] là hình chiếu vuông góc của \[M\left( {3;1; - 2} \right)\] lên mặt phẳng \[\left( P \right)\]. Độ dài đoạn thẳng \[MH\] là
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
về câu hỏi!