Câu hỏi:
16/10/2024 1,876Trong không gian \[Oxyz\], vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng \[\left( P \right)\], biết \[\overrightarrow a = \left( { - 1; - 2; - 2} \right)\], \[\overrightarrow b = \left( { - 1;0; - 1} \right)\]là cặp vectơ chỉ phương của \[\left( P \right)\]?
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có vectơ pháp tuyến \[\overrightarrow n \] của mặt phẳng \[\left( P \right)\] bằng
\[\overrightarrow n = \left[ {\overrightarrow a ,\overrightarrow b } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&{ - 2}\\0&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&{ - 1}\\{ - 1}&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 1}&0\end{array}} \right|} \right) = \left( {2;1; - 2} \right).\]
Vậy vectơ pháp tuyến của mặt phẳng là \[\overrightarrow n = \left( {2;1; - 2} \right).\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Gọi \[M\left( {a;b;c} \right)\] với \[a \in \mathbb{Z},b \in \mathbb{R},c \in \mathbb{R}.\]
Ta có: \[\overrightarrow {AM} = \left( {a - 3;b - 1;c - 7} \right)\] và \[\overrightarrow {BM} = \left( {a - 5;b - 5;c - 1} \right)\].
Vì \[\left\{ \begin{array}{l}M \in \left( P \right)\\MA = MB = \sqrt {35} \end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}M \in \left( P \right)\\M{A^2} = M{B^2}\\M{A^2} = 35\end{array} \right.\] nên ta có hệ phương trình sau:
\[\left\{ \begin{array}{l}2a - b - c + 4 = 0\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = {\left( {a - 5} \right)^2} + {\left( {b - 5} \right)^2} + {\left( {c - 1} \right)^2}\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = 35\end{array} \right.\]
\[\left\{ \begin{array}{l}2a - b - c + 4 = 0\\4a - 8b - 12c = - 8\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = 35\end{array} \right.\]
\[\left\{ \begin{array}{l}b = c\\c = a + 2\\{\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 7} \right)^2} = 35\end{array} \right.\]
\[\left\{ \begin{array}{l}b = a + 2\\c = a + 2\\3{a^2} - 14a = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 2\\c = 2\end{array} \right.\] (do \[a \in \mathbb{Z}\]).
Ta có \[M\left( {0;2;2} \right)\] nên suy ra \[OM = 2\sqrt 2 .\]
Lời giải
Đáp án đúng là: A
Ta có: \[2\left( {x - 1} \right) + 3\left( {y - 1} \right) + \left( { - 1} \right)\left( {z - 3} \right) = 0\] hay \[2x + 3y - z - 2 = 0.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.