Câu hỏi:

21/10/2024 126

III. Vận dụng

So sánh giá trị hai biểu thức \({a^2} + {b^2} + {c^2} + {d^2}\) và \(a\left( {b + c + d + e} \right)\) với \(a,b,c,d,e\) là các só thực bất kỳ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Xét hiệu \(4\left[ {{a^2} + {b^2} + {c^2} + {d^2} - a\left( {b + c + d + e} \right)} \right]\) ta có:

\(4\left[ {{a^2} + {b^2} + {c^2} + {d^2} - a\left( {b + c + d + e} \right)} \right]\)

\( = 4{a^2} + 4{b^2} + 4{c^2} + 4{d^2} - 4ab - 4ac - 4ad - 4ae\)

\( = \left( {{a^2} - 4ab + 4{b^2}} \right) + \left( {{a^2} - 4ac + 4{c^2}} \right) + \left( {{a^2} - 4ad + 4{d^2}} \right) + \left( {{a^2} - 4ae + 4{e^2}} \right)\)

\( = {\left( {a - 2b} \right)^2} + {\left( {a - 2c} \right)^2} + {\left( {a - 2d} \right)^2} + {\left( {a - 2e} \right)^2}\)

Do \({\left( {a - 2b} \right)^2} \ge 0\), \({\left( {a - 2c} \right)^2} \ge 0\), \({\left( {a - 2d} \right)^2} \ge 0\), \({\left( {a - 2e} \right)^2} \ge 0\)

Nên \({\left( {a - 2b} \right)^2} + {\left( {a - 2c} \right)^2} + {\left( {a - 2d} \right)^2} + {\left( {a - 2e} \right)^2} \ge 0\)

Hay \(4\left[ {{a^2} + {b^2} + {c^2} + {d^2} - a\left( {b + c + d + e} \right)} \right] \ge 0\).

Từ đó suy ra \({a^2} + {b^2} + {c^2} + {d^2} - a\left( {b + c + d + e} \right) \ge 0\) (chia cả hai vế bất đẳng thức cho 4)

Hay \({a^2} + {b^2} + {c^2} + {d^2} \ge a\left( {b + c + d + e} \right)\).

Vậy \({a^2} + {b^2} + {c^2} + {d^2} \ge a\left( {b + c + d + e} \right)\), dấu xảy ra khi \(a = 2b = 2c = 2d = 2e\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Ta có:

\[a + 2024 < b + 2024\]

Suy ra:

\[a + 2024--2024 < b + 2024--2024\] (trừ hai vế của bất đẳng thức cho 2014)

\[a < b\].

Vậy \[a < b\].

Câu 2

Lời giải

Đáp án đúng là: D

Ta có \(a\) không lớn hơn \(b\) khi \(a\) nhỏ hơn hoặc \(a\) bằng \(b\).

Do đó, để diễn tả \(a\) không lớn hơn \(b\), ta có bất đẳng thức \[a \le b\].

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP