Câu hỏi:

21/10/2024 145

Rút gọn biểu thức \(\frac{x}{y}:\sqrt {\frac{{{x^2}}}{{{y^4}}}} \) với \(x > 0,y \ne 0\) ta được

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có \[\frac{x}{y}:\sqrt {\frac{{{x^2}}}{{{y^4}}}} = \frac{x}{y}.\sqrt {\frac{{{y^4}}}{{{x^2}}}} = \frac{x}{y}.\frac{{\sqrt {{y^4}} }}{{\sqrt {{x^2}} }}\]

\[ = \frac{x}{y}.\frac{{\sqrt {{{\left( {{y^2}} \right)}^2}} }}{{\sqrt {{x^2}} }} = \frac{x}{y}.\frac{{{y^2}}}{{\left| x \right|}} = \frac{x}{y}.\frac{{{y^2}}}{x} = y\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có \(\sqrt[3]{{64}} \cdot \sqrt[3]{{125}} - \sqrt[3]{{216}} = \sqrt[3]{{{4^3}}} \cdot \sqrt[3]{{{5^3}}} - \sqrt[3]{{{6^3}}} = 4 \cdot 5 - 6 = 14\).

Câu 2

Lời giải

Đáp án đúng là: A

Ta có \(\frac{{\sqrt {10} - \sqrt {15} }}{{\sqrt 8 - \sqrt {12} }} = \frac{{\sqrt {5 \cdot 2} - \sqrt {5 \cdot 3} }}{{\sqrt {4 \cdot 2} - \sqrt {4 \cdot 3} }}\)

\( = \frac{{\sqrt 5 .\sqrt 2 - \sqrt 5 \cdot \sqrt 3 }}{{\sqrt 4 .\sqrt 2 - \sqrt 4 \cdot \sqrt 3 }}\)

\( = \frac{{\sqrt 5 \left( {\sqrt 2 - \sqrt 3 } \right)}}{{\sqrt 4 \left( {\sqrt 2 - \sqrt 3 } \right)}} = \frac{{\sqrt 5 }}{{\sqrt 4 }} = \frac{{\sqrt 5 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP